norma
Luca Tomassini
Sia X uno spazio vettoriale. Un’applicazione ∣∣∙∣∣:X→ℝ si dice una norma se verifica i seguenti assiomi: (a) ∣∣x∣∣≥0, per ogni x∈X; ∣∣x∣∣=0 se e soltanto se x=0; (b) ∣∣λx∣∣=∣λ∣·∣∣x∣∣, [...] per la sua generalità. Uno spazio normato e completo (come spazio metrico), ossia tale che ogni successione di Cauchy è convergente, si dice spazio di Banach. Non è affatto necessario che lo spazio normato (X,∣∣∙∣∣) sia uno spazio vettoriale a ...
Leggi Tutto
spazio duale
Luca Tomassini
Dato uno spazio vettoriale reale (o complesso) X si definisce il suo duale Y come lo spazio vettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] sullo spazio X determina una topologia su X*, detta topologia debole, definita come segue: una successione generalizzata (o net) fλ è detta convergente a f se fλ(x)→f(x) per ogni x∈X. È dunque possibile considerare lo spazio duale X** di X*, detto ...
Leggi Tutto
Equazioni funzionali
Jacques-Louis Lions
La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] facilità, possono richiedere degli intervalli Δt molto più piccoli.
Sorge allora spontanea l'idea di conservare la buona convergenza dei metodi impliciti, ma di semplificare la risoluzione della [52] o di una equazione analoga. Si arriva così ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] x-3/2 e questa non è integrabile su (0, 1].
Vale la pena di indicare sommariamente la linea dimostrativa del teorema della convergenza dominata di Lebesgue. Dato un ε>0, lo spazio X viene suddiviso in tre insiemi An, Bn e C dotati delle proprietà ...
Leggi Tutto
Dirichlet Peter Gustav Lejeune
Dirichlet 〈diriklé〉 Peter Gustav Lejeune [STF] (Düren, presso Aquisgrana, 1805 - Gottinga 1859) Prof. di matematica nell'univ. di Berlino, succedette a Gauss nell'univ. [...] D.: se la funzione f(x) definita nell'intervallo (-π,π) verifica ivi le condizioni di D., la serie di Fourier di f(x) è convergente in questo intervallo e la somma della serie risulta uguale a f(x) nei punti di continuità, a (f(x+)+f(x-))/2 nei punti ...
Leggi Tutto
Gauss Karl Friedrich
Gauss 〈gàus〉 Karl Friedrich [STF] (Brunswick 1777 - Gottinga 1855) Prof. di astronomia nell'univ. di Gottinga e direttore del locale Osservatorio astronomico (1807). ◆ [ALG] Applicazione [...] 6.3. ◆ [MCS] Integrale di G.: portano questo nome due integrali di natura diversa: (a) l'integrale ∫+∞-∞ exp(-x2)dx; esso è assolut. convergente e il suo valore è limm, n→∞∫n-m exp(-x2) dx=π1/✄; (b) un particolare integrale che dà, a meno del fattore ...
Leggi Tutto
spazio metrico
Luca Tomassini
Nozione introdotta nel 1906 da Maurice Fréchet e sviluppata poco dopo da Felix Hausdorff; è un risultato diretto dell’analisi delle principali proprietà astratte della [...] n0∈ℕ tale che d(xn,xm)〈ε per ogni m,n>0. Uno spazio metrico I si dice completo se ogni successione di Cauchy è convergente, ovvero il suo limite esiste ed è un elemento di I. In uno spazio metrico (I,d) si chiama palla aperta di centro x0 e raggio ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] simili a quelle della funzione ζ di Euler; in particolare Dedekind dimostrò nel 1879 che (1) ζk(s) è assolutamente convergente per Re(s)>1; (2) ζk(s) ammette una formula prodotto (grazie al teorema fondamentale dell'aritmetica di Dedekind ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] , introdotta da Richard S. Palais e Steven Smale (PSc): ogni succesione tale che f(xk)→c e ∇f(xk)→0 ha una sottosuccessione convergente xk→p.
Naturalmente, p è un punto critico per f. In pratica basterà provare che ogni successione per cui f(xk)→c e ...
Leggi Tutto
Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, [...] somma di una serie data, se le funzioni fk(x) sono derivabili in (a, b) e se la serie delle d. è uniformemente convergente, la somma di quest’ultima serie è la funzione d. di F(x), cioè
Invertibilità delle derivazioni parziali Se una data funzione ...
Leggi Tutto
convergente
convergènte agg. e s. m. [part. pres. di convergere]. – 1. agg. Che converge, cioè si dirige a un medesimo fine o punto: linee c.; strade c.; due fasci di luce convergenti; e in senso fig.: azioni, interessi convergenti. 2. agg....
convergènza s. f. [der. di convergere]. – 1. Il convergere, l’essere convergente, cioè diretto verso un unico punto o limite: c. di due linee, di due strade; negli autoveicoli, c. delle ruote, la particolare disposizione delle ruote, che non...