Vicino Oriente antico. La matematica
Jöran Friberg
La matematica
Gli esercizi metro-matematici nel III millennio
La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] per tali sistemi di equazioni fossero basate su identità algebriche del tipo della regola quadratica del mezzo termine, cioè fig. M), come pure quello di linea tangente, retta o curva. Queste figure all'interno di altre figure mostrano anche l'uso ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] Al contrario, anche se non disdegna di studiare casi singoli, l’oggetto della geometria cartesiana è la curva ‘generica’, espressa mediante un’equazione algebrica in due variabili F(x,y)=0, e il problema diventa quello di trovare dei metodi generali ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] dal fatto che queste curve sono considerate da un punto di vista sistematico, distinguendo i vari tipi in base alle loro proprietà, proprietà che sono dimostrate nel trattato. L’opera di Apollonio, dunque, non è più algebrica di quella di Euclide ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] , ma oltre la quale non può avventurarsi. È da qui che trae origine la distinzione che Descartes opera fra curvealgebriche e curve trascendenti, le une da includere nella geometria, le altre, invece, da bandire.
Il canone intuizionista cartesiano è ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] con l'ausilio di strumenti geometrici che geometria affrontata con strumenti algebrici. James Stirling (1692-1770) pubblicò nel 1717 un libro sulle curvealgebriche piane ‒ Lineae tertii ordinis neutonianae ‒, con particolare riguardo a quelle di ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] concettuali. Per questo motivo occupano una posizione dominante, come precursori del futuro concetto aritmetico-algebrico di funzione e di numero, i concetti di punto, curva e superficie. Nel XVII sec. l'odierna funzione reale di una o più variabili ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] su questo argomento, dimostrando così che esistono superfici minime la cui equazione è algebrica, superfici minime rigate, superfici minime con una data curva piana come geodetica, superfici minime non orientabili (la superficie di Henneberg), e così ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria della misura
Maurice Sion
La teoria della misura
Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] vista geometrico dell'integrale come 'area al di sotto della curva': una funzione f di n variabili determina, tramite il suo dello studio degli spazi di funzioni e utilizza sia nozioni di algebra lineare sia di analisi. La sua relazione con la teoria ...
Leggi Tutto
Civilta islamica: antiche e nuove tradizioni in matematica. Tracciato continuo delle coniche e classificazione delle curve
Roshdi Rashed
Tracciato continuo delle coniche e classificazione delle curve
Il [...] geometriche e curve meccaniche a seconda che sia possibile o meno applicare la teoria delle proporzioni, è di importanza capitale nella storia della geometria, in particolare ‒ molto più tardi ‒ della geometria algebrica. Si tratta ora di sapere ...
Leggi Tutto
L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo
Ivor Grattan-Guinness
Matematica pura e applicata nel XVIII secolo
Nel presente volume la determinazione cronologica 'Settecento' [...] Il manuale di Euler è stato citato in precedenza. L'algebra fu applicata alla teoria dei numeri, ma pochi matematici vi si pensavano in termini geometrici; le funzioni erano intese come curve e superfici, e rettangoli o cuboidi di materia continua ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
hessiano
〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...