singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o [...] superficie, nella mancanza di piano tangente. Per le funzioni di più variabili definite implicitamente, c’è una s. nei punti in cui le derivateparziali non esistono o sono tutte nulle. Sono s., per es., i nodi e le cuspidi di una curva algebrica. ...
Leggi Tutto
Fisico e matematico inglese (Bristol 1902 - Tallahassee, Florida, 1984), premio Nobel per la fisica nel 1933. Diplomato in ingegneria elettrica, virò poi i suoi interessi verso la scienza fondamentale. [...] basata sull’algebra non commutativa di operatori. Derivò l’equazione relativistica delle particelle a spin semintero utilizzata anche nello studio delle equazioni differenziali alle derivateparziali, e uno schema di notazioni (formalismo bra ...
Leggi Tutto
Fisica matematica
Andrei Tjurin
Vieri Mastropietro
L'interazione fra fisica e matematica è divenuta ancora più proficua negli ultimi anni. Nelle ricerche sulle interazioni fondamentali (gravitazionali, [...] Fa=F⁺a+F⁻a è data dallo *-operatore di Hodge associato a g) come una famiglia di equazioni alle derivateparziali con parametro [a]. Lo spazio delle orbite delle soluzioni è il cosiddetto spazio dei moduli degli istantanei.
La linearizzazione dell ...
Leggi Tutto
Geofisica
Pietro Dominici
(App. I, p. 647; III, i, p. 722; IV, ii, p. 27; V, ii, p. 383)
Nei vari settori di pertinenza della g. è proseguito negli ultimi anni il progresso tecnico e delle conoscenze [...] e in particolare a contrastarne gli effetti dannosi che ne derivano. Si trattò di un atteggiamento che pervase in modo particolarmente differenziali non lineari del secondo ordine alle derivateparziali, con un numero di coefficienti dell'ordine ...
Leggi Tutto
RELATIVITÀ, Teoria della (XXIX, p. 15; App. II, ii, p. 681)
Maria PASTORI
La teoria della r. nella sua prima forma, della r. ristretta, è diventata presupposto indispensabile del progresso della fisica [...] U è il potenziale gravitazionale; b) l'equazione di campo cui soddisfa il potenziale U: questa è sempre un'equazione alle derivateparziali del secondo ordine; se il punto è esterno alle masse che creano il campo, è l'equazione di Laplace
se il punto ...
Leggi Tutto
L'evoluzione temporale dei sistemi - in particolare di quelli deterministici, cioè tali che la conoscenza del sistema a un dato istante ne determina tutta l'evoluzione futura - è stata negli ultimi decenni [...] temporale è spesso astrattamente descritta mediante modelli continui come le equazioni differenziali (ordinarie o alle derivateparziali). Geometricamente questa descrizione equivale a immaginare lo spazio delle fasi come una varietà differenziabile ...
Leggi Tutto
Stabilità
Corrado Mascia
Uno degli aspetti fondamentali del mondo naturale è la sua potenzialità di trasformazione; è proprio l'evolvere degli oggetti che permette all'uomo di percepire lo scorrere [...] dalle successioni ottenute per ricorrenza. Il caso più classico è quello delle cosiddette equazioni differenziali (ordinarie e alle derivateparziali), in cui il parametro temporale n è una variabile continua e non discreta.
La s. di un equilibrio ...
Leggi Tutto
Matematico italiano (Ancona 1860 - Roma 1940). Docente a Roma, nel 1931, non avendo giurato la fedeltà al regime fascista, fu costretto a dimettersi dall'insegnamento. V. ottenne risultati fondamentali [...] e della fisica matematica. A lui si devono risultati e metodi fondamentali nel campo delle equazioni a derivateparziali della fisica matematica, della teoria dell'elasticità, delle equazioni integrali e integro-differenziali e, in partic., la ...
Leggi Tutto
solitrone In fisica, termine usato per indicare qualunque soluzione (detta anche onda solitaria) di un’equazione non lineare alle derivateparziali di evoluzione che abbia la caratteristica di mantenersi [...] localizzata e di comportarsi in sostanza come una particella. Un tipo particolare di s. è costituito dai solitoni, entità localizzate, presenti in soluzioni numeriche dell’equazione di Korteweg e de Vries, ...
Leggi Tutto
In fisica e matematica, vettore definito in uno spazio a 4 dimensioni e quindi definito da 4 componenti: particolarmente importanti i q. ottenuti associando alle 3 componenti spaziali di un vettore ordinario [...] Operatore differenziale, che, applicato a uno scalare ϕ, dà luogo a un q. le cui componenti sono le derivateparziali rispetto alle variabili, cioè
∂ϕ ∂ϕ ∂ϕ ∂ϕ
gradϕ ≡ ∇ ϕ ≡ (−−−−, −−−−, −−−−, −−−−).
∂x1 ∂x2 ∂x3 ∂x4
Tale operatore trova applicazione ...
Leggi Tutto
parziale
agg. [dal lat. tardo partialis, der. di pars partis «parte»]. – 1. a. Che si riferisce solo a una parte, o che costituisce una parte, o si fa solo in parte e sim. (di solito in contrapp. a totale): un’eclissi p. di sole, di luna;...
parzialita
parzialità s. f. [der. di parziale]. – 1. non com. Carattere di ciò che è parziale, cioè non completo (generalm. in contrapp. a totalità): è difficile azzardare previsioni, vista la p. dei dati finora pervenuti; la proposta è stata...