numero di condizionamento
Alfio Quarteroni
Si consideri il problema di trovare u tale che F(u,d)=0, dove d è l’insieme dei dati da cui dipende la soluzione e F esprime la relazione (detta anche legge [...] d come u=F(d) e analogamente si abbia un=Fn(dn) per il modello numerico. Se le leggi f e fn sono differenziabili, applicando uno sviluppo di Taylor arrestato al primo termine si ottengono le seguenti stime per K(d) e Kn(dn):
e, analogamente,
Se ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] q. o e risulta σ′=f q. o.
Vi sono delle funzioni integrabili secondo Birkhoff e secondo Pettis i cui integrali non sono differenziabili q. o. in senso debole.
5. Teoremi di convergenza.
Sia (X, Σ, μ) un qualsiasi spazio di misura. L'integrale di una ...
Leggi Tutto
Stokes Sir George Gabriel
Stokes 〈stóuks〉 Sir George Gabriel [STF] (Skreen 1819 - Cambridge 1903) Prof. di matematica nell'univ. di Cambridge (1837); socio straniero dei Lincei (1888). ◆ [MCF] Costante [...] circuitazione: v. campi, teoria classica dei: I 470 f. Nella geometria differenziale tale teorema si generalizza a varietà differenziabili: v. varietà riemanniane: VI 510 d. ◆ [GFS] Teoremi di S. (primo e secondo) della gravimetria: v. geodesia: III ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] a. ◆ [ANM] Operatore di L.: lo stesso che laplaciano. ◆ [ALG] Operatore di L.-Beltrami: è la generalizzazione del laplaciano per varietà differenziabili: se d è la derivata esterna e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali ...
Leggi Tutto
analisi
anàlisi [Der. del gr. análysis "scomporre in elementi"] [LSF] Scomposizione di un tutto, concreto o astratto, nelle parti che lo costituiscono, soprattutto a scopo di studio; si oppone a sintesi, [...] che considera operatori (o applicazioni) non lineari definiti su spazi lineari (a. non lineare classica) oppure su varietà differenziabili (a. non lineare su varietà): v. analisi non lineare. ◆ [ANM] A. non standard: disciplina nata negli anni '60 ...
Leggi Tutto
Chimica
Generalità
L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] dei risultati tipici di a. sulle varietà, invece, è il teorema di Atiyah-Singer, che lega la geometria delle varietà differenziabili alle proprietà degli operatori ellittici definiti su di esse.
Musica
L’a. musicale è quella disciplina che mira a ...
Leggi Tutto
distribuzione
distribuzióne [Der. del lat. distributio -onis "atto ed effetto del distribuire o del distribuirsi", da distribuere "dividere tra più persone", comp. di dis- e tribuere "attribuire"] [LSF] [...] [EMG] D. in frequenza della radiazione: v. irraggiamento di cariche: III 318 a. ◆ [ALG] D. k-dimensionale: v. varietà differenziabili: VI 490 d. ◆ [PRB] D. microcanonica: elemento dell'insieme statistico per la descrizione di un sistema in equilibrio ...
Leggi Tutto
Equazioni funzionali
Jacques-Louis Lions
La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] termini, sia P un operatore differenziale di ordine m,
[1] formula
in cui si supponga dapprima che i coefficienti pα siano differenziabili indefinitamente. Qui e nel seguito α=(α1,...,αn) è un multi-indice (αi∈ℕ), ∣α∣=∑iαi e Dα=∂α1/∂x1...∂αn/∂xn ...
Leggi Tutto
funzione
funzióne [Der. del lat. functio -onis, dal part. pass. functus di fungi "adempiere"] Concetto che s'identifica con quello di applicazione, essendo peraltro preferito se l'insieme di arrivo è [...] il cambiamento di coordinate necessario per passare da una carta a un’altra di un atlante di una varietà: v. varietà differenziabili infinito-dimensionali: VI 492 e. (b) ◆ Data una catena di Markov, è la f. che fornisce le probabilità del sistema di ...
Leggi Tutto
Araldica
Le p. sono divisioni dello scudo mediante una o più linee orizzontali, verticali, diagonali o per mezzo di linee convergenti, al fine di creare campi diversi per accogliere stemmi o figure a seguito [...] 1 + 3 + 5 = 2 + 3 + 4.
P. dell’unità In geometria differenziabile, è una tecnica di grande utilità nelle questioni attinenti all’integrazione sulle varietà differenziabili. Limitandosi ai fatti essenziali, si può dire che se una varietà differenziale ...
Leggi Tutto
differenziabile
differenziàbile agg. [der. di differenziare]. – 1. Che si può differenziare, di cui è possibile riconoscere la o le differenze: oggetti, concetti, specie vegetali facilmente o difficilmente differenziabili. 2. In matematica,...
differenziamento
differenziaménto s. m. [der. di differenziare]. – L’atto, il fatto e il risultato del differenziare, o del differenziarsi: il progressivo d. di due caratteri simili, di due situazioni analoghe; d. didattico, la individualizzazione...