• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
48 risultati
Tutti i risultati [48]
Matematica [26]
Fisica [8]
Geometria [9]
Temi generali [8]
Fisica matematica [6]
Storia della matematica [6]
Algebra [5]
Statistica e calcolo delle probabilita [3]
Analisi matematica [2]
Biografie [2]

STORIA DELLA MATEMATICA

Enciclopedia della Matematica (2013)

STORIA DELLA MATEMATICA Luigi Borzacchini STORIA DELLA MATEMATICA Il tempo della scienza senza tempo La matematica è la più antica e la più immutabile delle discipline. Si può dire che la matematica [...] di dimensioni, di curvatura, di proprietà invarianti e di di R o la definibilità di insiemi non misurabili secondo qualsiasi definizione ragionevole di misura (come l’insieme di Vitali), e anche autentici paradossi, come quello di Hausdorff ... Leggi Tutto
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – METODO DEI MOLTIPLICATORI DI LAGRANGE – ACCADEMIA DELLE SCIENZE DI BERLINO – TEOREMA FONDAMENTALE DELL’ALGEBRA – MEDITATIONES DE PRIMA PHILOSOPHIA

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] , il rango di P è al più n. Il massimo dei ranghi di tutti gli ideali primi è la dimensione di Krull di R. La dimensione di Krull sale dai titolo di esempio, un legame tra moduli proiettivi e topologia (Swan, 1962): se X è uno spazio di Hausdorff ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] sempre radicata che la dimensione di uno spazio è univocamente determinata dal numero di coordinate indipendenti, necessarie per il fondamento dell'intera matematica", dichiara Hausdorff. Sul "fondamento di questo fondamento", tuttavia, dopo la crisi ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] precedenti questa varietà era il piano proiettivo complesso Si ricordi che una varietà analitica complessa di dimensione s è uno spazio topologico di Hausdorff che può essere ricoperto da carte locali, ognuna delle quali è copia omeomorfa ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] di x; si dice allora che F converge verso x. Uno spazio topologico che soddisfi l'assioma di separazione di Hausdorff di Krull, di Dedekind e gli anelli fattoriali. L'ottavo capitolo riguarda la nozione generale di dimensione di un anello e di ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] di una soluzione è piccolo rispetto a un'opportuna misura di Hausdorff. Equazioni di evoluzione non lineari, flussi di fluidi e dinamica dei gas Numerosi problemi di caso in cui la dimensione dello spazio nullo di L è maggiore di 1 fu ottenuta nei ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Geometria

Enciclopedia della Scienza e della Tecnica (2007)

Geometria Edoardo Vesentini Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche [...] perché in essi intervenivano dimensioni di sistemi lineari di divisori, numeri di intersezione, serie caratteristiche ossia per spazi di Hausdorff a base numerabile localmente omeomorfi ad aperti di spazi euclidei con cambiamenti di coordinate locali ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DEI LINCEI – SPAZIO TOPOLOGICO COMPATTO – GEOMETRIA DIFFERENZIALE – ALEXANDER GROTHENDIECK – FRIEDRICH HIRZEBRUCH
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

Leggi di scala

Enciclopedia della Scienza e della Tecnica (2007)

Leggi di scala Luciano Pietronero Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] le strutture frattali rappresentano un perfetto esempio di invarianza di scala, ma solo per quanto concerne la dimensione metrica o di Hausdorff. In realtà si possono identificare leggi di scala anche per proprietà diverse e più generali ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – INTERNET
TAGS: DISTRIBUZIONE DI PROBABILITÀ – TEOREMA DEL LIMITE CENTRALE – GRUPPO DI RINORMALIZZAZIONE – DISTRIBUZIONE DI POISSON – DISTRIBUZIONE GAUSSIANA

DE GIORGI, Ennio

Dizionario Biografico degli Italiani (2014)

DE GIORGI, Ennio Enrico Moriconi Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich. La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] era falso per spazi di dimensione maggiore o uguale a 9 di analisi funzionale e di calcolo delle variazioni, come, per es., il problema di mostrare l’esistenza di punti limite per ogni successione di chiusi di uno spazio compatto di Hausdorff ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – ACCADEMIA NAZIONALE DELLE SCIENZE, DETTA DEI XL – PONTIFICIA ACCADEMIA DELLE SCIENZE – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONE ALLE DERIVATE PARZIALI
Mostra altri risultati Nascondi altri risultati su DE GIORGI, Ennio (4)
Mostra Tutti

Frattali

Enciclopedia della Scienza e della Tecnica (2007)

Frattali Luciano Pietronero La geometria frattale permette di caratterizzare le strutture che godono della proprietà di invarianza di scala. Il termine frattale (dal latino fractus, rotto o frammentato) [...] è esteso o compatto. In termini rigorosi si definisce frattale un sistema in cui la dimensione metrica o di Hausdorff è maggiore della sua dimensione topologica. Proprietà delle strutture frattali Il fatto che una struttura sia autosimile o frattale ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GRUPPO DI RINORMALIZZAZIONE – EQUAZIONI DI NAVIER-STOKES – EQUILIBRIO TERMODINAMICO – EQUAZIONI DIFFERENZIALI – INSIEME DI MANDELBROT
1 2 3 4 5
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali