• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
104 risultati
Tutti i risultati [104]
Matematica [50]
Fisica [16]
Storia della matematica [17]
Analisi matematica [13]
Algebra [12]
Fisica matematica [10]
Filosofia [9]
Temi generali [8]
Geometria [7]
Storia della fisica [6]

lagrangiano

Dizionario delle Scienze Fisiche (1996)

lagrangiano lagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] [ALG] Spazio l.: particolare spazio di Hausdorff, i cui elementi sono le funzioni di punto f(P) definite in un medesimo dominio D dello spazio euclideo, e nel quale per intorno di una funzione f₀(P) s'intenda l'insieme (detto intorno l.) di tutte le ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA

Green George

Dizionario delle Scienze Fisiche (1996)

Green George Green 〈grìin〉 George [STF] (Sneinton, Nottingham, 1793 - ivi 1841) Prof. di matematica nel Caius College di Cambridge. ◆ [ANM] Formula di G.: v. oltre: Teorema di Green. ◆ [ANM] Formula [...] , o lemma, o formula, di G.: permette di trasformare l'integrale di una funzione U di n variabili xi esteso a un dominio C dello spazio euclideo a n dimensioni in un integrale esteso alla frontiera Σ di C, ∫C(ðU/ðxi)dC=-∫ΣUαidΣ, con i=1,...,n e αi ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – INTEGRALE DI UNA FUNZIONE – EQUAZIONE DIFFERENZIALE – VARIETÀ RIEMANNIANE – SPAZIO EUCLIDEO
Mostra altri risultati Nascondi altri risultati su Green George (2)
Mostra Tutti

rappresentazione cartesiana

Enciclopedia della Matematica (2013)

rappresentazione cartesiana rappresentazione cartesiana metodo generale che permette di associare oggetti geometrici a oggetti di natura algebrica quali n-ple ordinate di numeri reali, equazioni e disequazioni, [...] cartesiano (→ coordinate cartesiane). Per esempio, nel piano euclideo, introdotti gli assi di un sistema di riferimento data da una equazione ƒ(x, y) = 0, assegnata in un certo dominio D, nel senso che la curva è costituita da tutti e soli i punti ... Leggi Tutto
TAGS: SISTEMA DI RIFERIMENTO CARTESIANO – EQUAZIONE DI SECONDO GRADO – EQUAZIONE DI PRIMO GRADO – CORRISPONDENZA BIUNIVOCA – COPPIA ORDINATA

Lipschitz, dominio di

Enciclopedia della Matematica (2013)

Lipschitz, dominio di Lipschitz, dominio di o dominio lipschitziano o dominio a frontiera lipschitziana, dominio di uno spazio euclideo la cui frontiera può essere localmente descritta come grafico di [...] una funzione che soddisfa la condizione di → Lipschitz; proprio per questo una funzione di questo tipo, anche detta funzione lipschitziana, è sufficientemente regolare ... Leggi Tutto
TAGS: CONDIZIONE DI → LIPSCHITZ – GRAFICO DI UNA FUNZIONE – SPAZIO EUCLIDEO
1 2 3 4 5 6 7 8 ... 11
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
miṡura
miṡura s. f. [lat. mensūra, der. di mensus part. pass. di metiri «misurare»]. – 1. a. Il valore numerico attribuito a una grandezza, ottenuto ed espresso come rapporto tra la grandezza data e un’altra della stessa specie assunta come unità (unità...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali