La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] a Pitagora e alla sua scuola e sono enunciate negli Elementi di Euclide.
In relazione alla nozione di divisibilità tutti i della determinazione di una costante ϑ=ϑ(n) tale che per un numero algebrico α di ordine n la disuguaglianza ∣α−p/q∣>q−ϑ−ε ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] , le differenze, i prodotti, le divisioni e le radici sono interpretate ancora come segmenti: cioè la sua algebra è chiusa e i suoi elementi sono tutti omogenei.
Verso la metà del primo libro della Géométrie, Descartes annuncia: "Mi pare di aver ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] =X/Z e y=Y/Z. Si verifica inoltre che, data una curva algebrica piana proiettiva C di grado d, allora
In particolare, se C′ è un V,β) deve essere sostituito lo spazio Mg,n (V,β) i cui elementi sono classi di isomorfismo [C, f, p1,…,pn], dove C è una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] di un gruppo di Lie, gli automorfismi elementari di un'algebra di Lie, gli elementi regolari di un'algebra di Lie, nonché le algebre di Lie scindibili.
L'ottavo capitolo comincia con lo studio dell'algebra di Lie SL(2,k) per un corpo commutativo k ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] ., dei quali abbiamo detto. La potenza dei nuovi metodi algebrici e analitici portò i matematici, con rare eccezioni, a escludere insiemi, e cioè delle 'liste' di insiemi i cui elementi sono ancora liste di operazioni, relazioni, grafi, matrici, ecc ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] fa però appello a proprietà dei polinomi e a loro trasformazioni algebriche. Supponiamo che il polinomio abbia uno zero molto più grande . Egli suppone però dapprima che due dei sei elementi da determinare siano invariabili, cioè esatti, per poter ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] i tecnicismi che vi intervengono, possiamo dare un'idea dell'utilità di allargare l'ambito della geometria algebrica includendo gli anelli con elementi nilpotenti. Un teorema della teoria dei sistemi non lineari di curve ha svolto un ruolo centrale ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] numeri quadrati 1, 4, 9, 16,…, e così via; negli Elementi di Euclide (attivo attorno al 300 a.C.) comparvero i numeri 2, −6, 12, 7, −3). Per es., i numeri razionali sono algebrici, e così il numero irrazionale
,
che verifica l’equazione x2−2=0, ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] Ciò significa che det(U−λI)=0 e questa è un'equazione algebrica in λ di grado n, che ha quindi almeno una radice e ) sono gli autovalori distinti, νj è la molteplicità di λj, le Ajk sono elementi di End(E) e, infine, ∑rj=1 νj=n. Allora, le condizioni ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] stesso Euler.
I principali oggetti di studio nel Settecento erano la teoria elementare dei numeri, i problemi diofantei del secondo ordine e i problemi inerenti i campi algebrici quadratici, in particolare le forme quadratiche e l'equazione di Pell ...
Leggi Tutto
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
elemento
eleménto s. m. [dal lat. elementum (di origine incerta), con cui i Latini rendevano i varî significati del gr. στοιχεῖον «principio, rudimento, lettera dell’alfabeto»]. – 1. Nel sign. più ampio, si dicono elementi le sostanze semplici...