La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] di permutazioni e negli algoritmi per l'isomorfismo dei grafi) sono essenzialmente la stessa cosa delle algebre di matrici reali simmetriche che ammettono una base di matrici a elementi 0 e 1, compresa la matrice identica, e la cui somma è la matrice ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] di F appartiene ancora a F, sicché F è un corpo. Un corpo ottenuto in questo modo è chiamato corpo di numeri algebrici. Ogni elemento di F può essere scritto in modo unico nella forma [15]. L'intero n è detto il grado di F.
Esempi di corpi di ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] in certi problemi di fisica quantistica, della teoria dei semigruppi al caso in cui gli elementi u(t) della funzione incognita siano in un' ‛algebra'. Recenti applicazioni della meccanica e della fisica hanno portato a disequazioni di evoluzione del ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Algebra e linguistica. Gli inizi dell'analisi combinatoria
Roshdi Rashed
Algebra e linguistica. Gli inizi dell'analisi combinatoria
Intorno [...] teorema del binomio e vederli come strumenti matematici necessari per l'algebra dei polinomi, per l'estrazione della radice n-esima di un intero, ecc. e altra cosa è considerarli come elementi di una nuova disciplina che si occupa delle partizioni di ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] numeri quadrati 1, 4, 9, 16,…, e così via; negli Elementi di Euclide (attivo attorno al 300 a.C.) comparvero i numeri 2, −6, 12, 7, −3). Per es., i numeri razionali sono algebrici, e così il numero irrazionale
,
che verifica l’equazione x2−2=0, ...
Leggi Tutto
Fermat, ultimo teorema di
Massimo Bertolin
"Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] modulo p di un'equazione per E a coefficienti interi definisce una curva ellittica Ẽ(p) sul campo finito con p elementi Fp=ℤ/pℤ. Sia Om l'anello degli interi algebrici in ℚ(E[m]). L'estensione ℚ(E[m])/ℚ è non ramificata in p se l'ideale pOm di Om si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] (A,B)×hom(B,C)→hom(A,C) e l'esistenza di un elemento 1A∈ hom(A, A) per ogni oggetto A che si comporta come formano i prodotti tensoriali Ui⊗Vi e Ai⊗Bi (che si identifica con l'algebra di tutti gli operatori su Ui⊗Vi) e le somme dirette W:=⊕Ki=1Ui⊕Vi ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] o sopracampo. A partire da un dato c. C, gli ampliamenti di C si distribuiscono in due grandi categorie: gli ampliamenti algebrici di C, quelli in cui ogni elemento è algebrico rispetto a C, e gli ampliamenti trascendenti, in cui invece ci sono anche ...
Leggi Tutto
insieme
insième [Der. del lat. insemel, forma corrotta di insimul, comp. di in- e simul "insieme"] [ALG] Secondo la definizione di G. Cantor, ogni raccolta (aggregato, famiglia) di enti distinti, detti [...] 606 f. ◆ I. termodinamici: v. limite centrale, teoremi del: III 414 b. ◆ I. vuoto: un i. senza elementi (v. sopra). ◆ Algebra degli i.: sistema algebrico i cui elementi sono i sottoinsiemi A, B, C, ecc. di un dato i. e le cui operazioni sono l’unione ...
Leggi Tutto
continuo e discreto
Paolo Zellini
Un enigma che la matematica ha sempre cercato di risolvere
Sono molte le domande che ci spingono a cercare una definizione del continuo. Lo spazio è composto di punti? [...] storia, una concezione aritmetica o algebrico-analitica, anziché geometrica. Tale spostamento 1/2 1
La divisione può quindi procedere all'infinito senza mai arrivare a elementi atomici o indivisibili (anche se non si può escludere, solo per questo, ...
Leggi Tutto
elemento
eleménto s. m. [dal lat. elementum (di origine incerta), con cui i Latini rendevano i varî significati del gr. στοιχεῖον «principio, rudimento, lettera dell’alfabeto»]. – 1. Nel sign. più ampio, si dicono elementi le sostanze semplici...
elementare
agg. [dal lat. mediev. elementaris, lat. tardo elementarius]. – 1. a. Che ha natura di elemento o che si riferisce a un elemento: sostanze, corpi e., che non si possono scomporre, semplici; particelle e., quelle, come il neutrino,...