• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
23 risultati
Tutti i risultati [335]
Meccanica [23]
Matematica [144]
Fisica [86]
Analisi matematica [56]
Fisica matematica [43]
Storia della matematica [37]
Storia della fisica [36]
Biografie [31]
Temi generali [30]
Algebra [25]

moto

Dizionario delle Scienze Fisiche (1996)

moto mòto [Der. del lat. motus -us, dal part. pass. motus di movere "muovere"] [LSF] L'atto e l'effetto del muoversi, cioè dello spostarsi di un corpo da una posizione a un'altra; si contrapp. a quiete [...] differenziali, che danno le coordinate del punto mobile come funzioni del tempo: v. equazioni differenziali alle derivate parziali: II 445 a. ◆ [RGR] Equazioni geodetiche del m.: v. relatività generale: IV 786 d. ◆ [BFS] [FME] [MCQ] Fluidodinamica ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – BIOFISICA – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su moto (4)
Mostra Tutti

diffusione

Dizionario delle Scienze Fisiche (1996)

diffusione diffusióne [Der. del lat. diffusio -onis "il diffondere o il diffondersi", dal part. pass. diffusus di diffundere "diffondere"] [LSF] Lo sparpagliarsi, in genere disordinato, di una sostanza [...] alle derivate parziali: II 444 e. ◆ [PRB] Equazione di d. all'avanti, all'indietro: v. diffusione, teoria della: II 169 c. ◆ [FSD] Fattore di d. atomico: v. raggi X, diffusione dei: IV 746 e. ◆ [FNC] Larghezza di d.: v. reazioni nucleari: IV 759 a ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI PLASMI – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – OTTICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su diffusione (1)
Mostra Tutti

differenziale

Dizionario delle Scienze Fisiche (1996)

differenziale differenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzioni reali di variabile reale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R [...] che sia il d. totale di una certa funzione V(x,y,z,...); ciò accade se A=ðV/ðx, B=ðV/ðy, C=ðV/ðz, ... ◆ [ANM] D. esterno: v più delle sue derivate successive e la variabile indipendente x, mentre sono equazioni d. alle derivate parziali quelle in cui ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su differenziale (3)
Mostra Tutti

Helmholtz Hermann Ludwig Ferdinand von

Dizionario delle Scienze Fisiche (1996)

Helmholtz Hermann Ludwig Ferdinand von Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] (c) [OTT] v. diffrazione della luce: II 139 e. ◆ [ANM] Equazione unidimensionale di H.: v. equazioni differenziali alle derivate parziali: II 440 a. ◆ [MCC] Funzione di H.: lo stesso che energia libera di H. (v. sopra). ◆ [OTT] Invariante di Lagrange ... Leggi Tutto
CATEGORIA: ACUSTICA – ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – OTTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI AL CONTORNO – POTENZIALI CHIMICI – LAVORO MECCANICO – ELETTRODINAMICA
Mostra altri risultati Nascondi altri risultati su Helmholtz Hermann Ludwig Ferdinand von (1)
Mostra Tutti

Heisenberg Werner Karl

Dizionario delle Scienze Fisiche (1996)

Heisenberg Werner Karl Heisenberg 〈hàisënberk〉 Werner Karl [STF] (Würzburg 1901 - Monaco di Baviera 1976) Prof. di fisica teorica nell'univ. di Lipsia (1927), poi direttore del Kaiser Wilhelm Institut [...] [MCC] Equazioni della catena di spin, o catena ferromagnetica, di H.: v. equazioni differenziali alle derivate parziali: II per cui se, per es., è la quantità di moto a essere determinata direttamente, la posizione non potrà essere determinata se non ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – MECCANICA QUANTISTICA – TRANSIZIONI DI FASE – MAX PLANCK INSTITUT – MONACO DI BAVIERA
Mostra altri risultati Nascondi altri risultati su Heisenberg Werner Karl (3)
Mostra Tutti

d'Alembert Jean-Baptiste Le Rond

Dizionario delle Scienze Fisiche (1996)

d'Alembert Jean-Baptiste Le Rond d'Alembert 〈d'alambèer〉 Jean-Baptiste Le Rond (in gioventù detto anche Dalembert o Daremberg) [STF] (Parigi 1717 - ivi 1783) Membro dell'Accademia di Francia dal 1754, [...] descrivere la vibrazione ondosa di una corda elastica: v. equazioni differenziali alle derivate parziali: II 438 d e onda: IV 234 e. ◆ [ANM] Operatore di d'A.: → dalembertiano. ◆ [MCF] Paradosso di d'A.: se un corpo si muove in un fluido perfetto o ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA FONDAMENTALE DELL'ALGEBRA – EQUAZIONI DI LAGRANGE – ACCADEMIA DI FRANCIA – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su d'Alembert Jean-Baptiste Le Rond (3)
Mostra Tutti

iperbolico

Dizionario delle Scienze Fisiche (1996)

iperbolico iperbòlico [agg. (pl.m. -ci) Der. di iperbole] [ALG] Cilindro i.(propr., cilindro a sezioni i.): cilindro quadrico tale che tutte le sue sezioni piane siano iperboli (v. fig). ◆ [ANM] Coseno [...] del suo piano; (b) [ANM] l'equazione differenziale lineare alle derivate parziali del 2° ordine, la cui equazione caratteristica sia iperbolica: v. equazioni differenziali alle derivate parziali: II 442 a. ◆ [ANM] Funzioni i. di variabile complessa ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA

Poisson Simeon-Denis

Dizionario delle Scienze Fisiche (1996)

Poisson Simeon-Denis Poisson 〈puasòn〉 Siméon-Denis [STF] (Pithiviers 1781 - Parigi 1840) Prof. di analisi matematica e di meccanica nell'École polytechnique (1802) e alla Sorbona di Parigi (1812). ◆ [...] di P. (v. sopra). ◆ [ANM] Formula di P.: (a) lo stesso che equazione di P. (v. sopra); (b) espressione di una soluzione particolare di un'equazione iperbolica: v. equazioni differenziali alle derivate parziali: II 444 d. ◆ [MCC] Formule di P.: legano ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONI DIFFERENZIALI ORDINARIE – DISTRIBUZIONE DI PROBABILITÀ – SOLUZIONI COLLOIDALI – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Poisson Simeon-Denis (2)
Mostra Tutti

condizione

Dizionario delle Scienze Fisiche (1996)

condizione condizióne [Der. del lat. condicio -onis (tardo conditio -onis), da condicere "accordarsi, convenire"] [LSF] Fatto il cui intervento è necessario perché un altro fatto possa verificarsi (per [...] per le equazioni differenziali alle derivate parziali, sono i valori prefissati che le funzioni incognite e talune loro derivate devono assumere applicate al sistema e il momento risultante rispetto a un qualunque punto dello spazio; tale c. diviene ... Leggi Tutto
CATEGORIA: FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA

Kirchhoff Gustav Robert

Dizionario delle Scienze Fisiche (1996)

Kirchhoff Gustav Robert Kirchhoff 〈kìrk'of〉 Gustav Robert [STF] (Königsberg 1824 - Berlino 1887) Prof. di fisica successiv. nelle univ. di Breslavia (1850), Heidelberg (1854) e Berlino (1875); socio [...] lo stesso che legge di K. (v. oltre). ◆ Formula di K.: (a) [ANM] per la risoluzione del problema di Cauchy associato all'equazione delle onde: v. equazioni differenziali alle derivate parziali: II 444 c; (b) [TRM] esprime la pressione di vapore p di ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METROLOGIA – OTTICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE – IRRAGGIAMENTO TERMICO – RESISTENZE ELETTRICHE – ATMOSFERA TERRESTRE
Mostra altri risultati Nascondi altri risultati su Kirchhoff Gustav Robert (2)
Mostra Tutti
1 2 3
Vocabolario
equazióne
equazione equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
hessiano
hessiano 〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali