L'Eta dei Lumi: la fine della conoscenza naturale 1700-1770. Mathematica mixta
Curtis Wilson
Niccolò Guicciardini
Alan E. Shapiro
Mathematica mixta
Astronomia
di Curtis Wilson
Nel XVIII sec. l'accuratezza [...] l'uso di 'equazionidi condizione' ridondanti, per correggere sia gli elementi orbitali sia i coefficienti di perturbazione. nella proiezione stereografica ed è normalmente chiamata 'proiezione diLagrange' perché fu generalizzata da questi. L'altra ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] errori diLagrange, Poisson non era stato capace di correggerli, e con il passare del tempo un numero sempre maggiore di iy)=u(x,y)+iv(x,y) soddisfa le equazionidi Cauchy-Riemann:
Da queste equazioni segue subito che le funzioni u e v sono ...
Leggi Tutto
L'Eta dei Lumi: la fine della conoscenza naturale 1700-1770. Concetti generali di materia e moto
James Evans
Concetti generali di materia e moto
Nel 1726, in seguito ai contrasti con le autorità francesi, [...] l'energia cinetica e l'energia potenziale a disposizione, le equazioni del moto si ottengono calcolando alcune derivate parziali e inserendole nella formula generale diLagrange.
Come dice Lagrange, "il metodo che espongo non richiede costruzioni né ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] a trovare una formula per la risoluzione delle equazionidi quinto grado (le 'quintiche'). Nel 1770 Joseph-Louis Lagrange aveva cominciato a sviluppare una teoria in grado di spiegare le ragioni di questo insuccesso, ma non l'aveva condotta a ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] mostrò che la funzione che definiva la superficie doveva soddisfare un'equazione alle derivate parziali. Nonostante la natura geometrica del problema, i metodi diLagrange erano tipicamente analitici; tuttavia poco dopo il 1776 il giovane matematico ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] o più di esse. Interpretando queste equazioni come equazionidi curve piane si possono sfruttare, per ricerche di analisi già accaduto nel XVIII sec. a opera diLagrange. Il nucleo più tecnico di questa teoria, trattata nei capitoli centrali ...
Leggi Tutto
L'Ottocento: fisica. La termodinamica
Olivier Darrigol
La termodinamica
Termodinamica è il nome dato da William Thomson (futuro lord Kelvin) nel 1854 alla nuova teoria meccanica del calore, fondata [...] delle macchine di L.Carnot, come nella dinamica di d'Alembert e nella meccanica analitica diLagrange, le rigettò così l'equazionedi Clausius d(dQ/dV)/dθ−d(dQ/dθ)/dV=R/JV (applicazione del primo principio a un ciclo di Carnot infinitesimale) come ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità diLagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] soprattutto da parte diLagrange. A suo parere, infatti, funzioni 'qualunque' come quelle che provenivano dalla soluzione diequazioni differenziali erano rappresentabili in serie di potenze, e non in serie di seni e coseni di archi multipli, come ...
Leggi Tutto
L'Ottocento: fisica. La nascita della meccanica statistica
Olivier Darrigol
Jürgen Renn
La nascita della meccanica statistica
Modelli meccanici dei fenomeni termici
Con la locuzione 'meccanica statistica' [...] a e−βiε (dove β è il moltiplicatore diLagrange associato al vincolo dell'energia totale fissata). Dopodiché volte il volume totale delle sfere. Van der Waals usò con successo l'equazionedi stato che derivava da queste assunzioni, (P+a/V2)(V−B)=RT, ...
Leggi Tutto
L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare
June Barrow-Green
Il problema dei tre corpi e la stabilità del Sistema solare
Questo capitolo illustra, a grandi [...] .
Poco dopo, Lindstedt applicò lo stesso metodo per cercare soluzioni espresse in forma di serie trigonometrica al problema dei tre corpi. Egli partì dalle equazionidiLagrange e poi, assumendo che le eccentricità, il rapporto tra i raggi vettori e ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...