Fisica
In acustica si definiscono suoni armonici o armoniche i suoni componenti, di varia altezza e di frequenza multipla di una stessa, che costituiscono un suono composto insieme con il componente [...] .
Analoga definizione vale per le funzioni in tre, o più variabili.
Forma a. Forma differenziale esterna ω, che soddisfa una particolare condizione analitica, generalizzazione dell’equazione di Laplace, del tipo Δω=0, ove Δ=dδ+δd essendo d e δ i ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] ben integrata con il resto della matematica moderna, che oggi porta il suo nome.
Lie cominciò con la teoria delle equazionidifferenziali, che rimase sempre un punto di riferimento nel suo lavoro. La sua prima ambizione, chiamata da Hawkins (1991) la ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] che, nella scala alla quale noi possiamo misurare, tale discretezza viene appianata, ed è per questo che le equazionidifferenziali danno una buona descrizione dell'Universo. La geometria non commutativa, sviluppata da Alain Connes e da altri, è ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] Sergej Michailovič Voronin) teoremi relativi alla loro indipendenza differenziale in risposta a uno dei problemi posti da algebrica.
Un numero α si dice algebrico di grado n se è radice di un'equazione f(x)=axn+bxn−1+…+c=0, dove a≠0, e b,…,c sono ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] vettoriali. Si stabiliscono i teoremi di esistenza e di unicità; sono studiate in modo particolare le equazioni e i sistemi di equazionidifferenziali lineari.
Il quinto capitolo sviluppa lo studio locale di una funzione. Si spiegano le relazioni di ...
Leggi Tutto
Fermat, ultimo teorema di
Massimo Bertolin
"Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] In linguaggio più moderno, l'ultimo teorema di Fermat (UTF) afferma che l'equazione
xn+yn=zn
non ha soluzioni intere (x,y,z), con x,y,z di spazio vettoriale complesso. Data f(z) in S2(N), il differenziale f(z)dz è invariante per l'azione di Γ0(N) ed ...
Leggi Tutto
Combinatoria
Peter J. Cameron
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] alla quale noi possiamo effettuare misurazioni, questa natura discreta non è osservabile ed è per questo che le equazionidifferenziali danno una buona descrizione dell'Universo. La geometria non commutativa, sviluppata da Alain Connes e altri, è ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] v. s'incontrano ovunque nella matematica e nelle sue applicazioni, dalla geometria algebrica alla teoria delle equazionidifferenziali, dalla topologia alla fisica matematica e alla fisica teorica. ◆ [ALG] V. abeliana: v. algebrica, topologicamente ...
Leggi Tutto
problema
problèma [Der. del lat. problema -atis, dal gr. próblema -atos, a sua volta da probállo "proporre"] [ALG] [ANM] Nella matematica e nelle sue applicazioni, quesito che richiede la determinazione [...] per es., v. interazioni nucleoniche: III 257 e. ◆ [ANM] P. ai limiti: v. equazionidifferenziali ordinarie nel campo reale: II 460 d. ◆ [ANM] P. associato: v. equazionidifferenziali ordinarie nel campo reale: II 461 a. ◆ [MCC] P. dei due corpi, dei ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] 384 f. ◆ [MCC] Inversione del teorema di L.-Dirichlet: v. stabilità del moto: V 579 d. ◆ [ANM] Metodo di L.: v. equazionidifferenziali ordinarie nel campo reale: II 453 b. ◆ [ANM] Moltiplicatori di L.: v. variazioni, calcolo delle: VI 470 b. ◆ [ANM ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...