• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
102 risultati
Tutti i risultati [806]
Analisi matematica [102]
Matematica [254]
Fisica [236]
Fisica matematica [108]
Temi generali [103]
Algebra [75]
Chimica [71]
Storia della fisica [64]
Ingegneria [58]
Statistica e calcolo delle probabilita [57]

Chebyshev Pafnutij L'vovic

Dizionario delle Scienze Fisiche (1996)

Chebyshev Pafnutij L'vovic Chebyshev (o Chebishev o Tchebyschef) 〈chibishòf〉 Pafnutij L'vovic [STF] (Okatovo 1821 - Pietroburgo 1894) Prof. di analisi matematica nell'univ. di Pietroburgo (1847). ◆ Disuguaglianza [...] [ANM] Polinomi di Ch.: sono i polinomi soluzione dell'equazione di Ch. (v. sopra), indicati generalm. con il indipendenti e continue nell'intervallo (a,b), tale che se una combinazione lineare di esse, α₀ϕ₀(x)+ ...+ αnϕn(x), si annulla più di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA
TAGS: LEGGE DEI GRANDI NUMERI – ANALISI MATEMATICA – VARIABILE CASUALE – NUMERI REALI – ATTENUAZIONE
Mostra altri risultati Nascondi altri risultati su Chebyshev Pafnutij L'vovic (3)
Mostra Tutti

programmazione

Dizionario delle Scienze Fisiche (1996)

programmazione programmazióne [Der. di programmare "preparare un programma"] [LSF] (a) La formulazione di un programma. (b) Con signif. particolare nelle locuz. p. lineare e non lineare (v. oltre). ◆ [...] di condizione varia a seconda della questione che si esamina); se una o più di queste equazioni e disequazioni non sono lineari, si parla di p. non lineare. Quest'ultima comprende una classe molto vasta di problemi, che in genere presentano ardue ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ANALISI MATEMATICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su programmazione (4)
Mostra Tutti

funzione di Green

Enciclopedia della Scienza e della Tecnica (2008)

funzione di Green Luca Tomassini Una funzione legata alla rappresentazione tramite integrali di soluzioni di equazioni differenziali (su una regione X⊂ℝ{[) con condizioni al bordo (della regione X, [...] con il simbolo fX). La funzione di Green G di un problema al bordo per un’equazione differenziale lineare è quella soluzione fondamentale dell’equazione stessa che soddisfa condizioni al bordo omogenee (ovvero della forma B∥G=0, dove gli operatori ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – EQUAZIONE DIFFERENZIALE LINEARE – TEORIA QUANTISTICA DEI CAMPI – OPERATORE DIFFERENZIALE – EQUAZIONE DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su funzione di Green (1)
Mostra Tutti

Schrodinger Erwin

Dizionario delle Scienze Fisiche (1996)

Schrodinger Erwin Schrödinger 〈šrö´ding✄ër〉 Erwin [STF] (Vienna 1887 - ivi 1961) Prof. di fisica nell'univ. di Stoccarda (1920), di Breslavia (1921) e di Zurigo; per i suoi contributi fondamentali alla [...] di S. indipendente dal tempo: v. meccanica quantistica: III 707 a. ◆ [MCQ] Equazione di S. non lineare: v. hamiltoniani, sistemi infinito-dimensionali: III 146 b. ◆ [MCQ] Equazione di S. non relativistica: v. sistemi di pochi nucleoni: V 297 f ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: MECCANICA QUANTISTICA – FUNZIONE D'ONDA – BRESLAVIA – STOCCARDA – IDROGENO
Mostra altri risultati Nascondi altri risultati su Schrodinger Erwin (6)
Mostra Tutti

soluzioni deboli

Enciclopedia della Scienza e della Tecnica (2008)

soluzioni deboli Luca Tomassini Consideriamo un operatore differenziale lineare definito su un aperto connesso A di ℝn, dove le ak(x) sono funzioni su A sufficientemente regolari (per es. differenziabili [...] xi componente i-esima del vettore x. Si dice allora soluzione debole dell’equazione differenziale Lu=f una funzione (localmente integrabile) u che soddisfi l’equazione per tutte le funzioni φ sufficientemente regolari (per esempio C∞) con supporto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE DIFFERENZIALE – EQUAZIONE DIFFERENZIALE – FUNZIONE GENERALIZZATA – DERIVATA PARZIALE – SOLUZIONE DEBOLE
Mostra altri risultati Nascondi altri risultati su soluzioni deboli (1)
Mostra Tutti

equazioni ellittiche non lineari

Enciclopedia della Scienza e della Tecnica (2008)

equazioni ellittiche non lineari Daniele Cassani Sia u:Ω⊂ℝν→ℝ. Un operatore differenziale della forma [1] dove aιϚ ,bι ,c: Ω→ℝ, è detto uniformemente ellittico (del secon;d’ordine, in quanto tali [...] tra massimo e minimo autovalore della matrice [aιϚ] rimanga limitato. L’operatore L è lineare, ovvero soddisfa L[αu1+βu2]=αLu1+βLu2, α,β∈ℝ, e pertanto si parla di equazioni ellittiche lineari della forma Lu=f(x), nella funzione incognita u e dove f è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE DIFFERENZIALE – EQUAZIONE ELLITTICA – FISICA MATEMATICA – TEORIA DEI CAMPI – ELLITTICITÀ

punti stazionari

Enciclopedia della Scienza e della Tecnica (2008)

punti stazionari Daniele Cassani Si consideri un funzionale, ovvero un’applicazione I:E→ℝ, definita su uno spazio normato E. Si ha che I è (Fréchet-) differenziabile in u∈E se esiste un’applicazione [...] per denotare il differenziale (di Fréchet) del funzionale I nel punto u∈E (si osservi che il differenziale di un applicazione lineare è l’applicazione stessa). Se la condizione precedente vale per ogni u∈E, I si dice differenziabile su E e sono detti ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: APPLICAZIONE LINEARE – DIFFERENZIABILE – SPAZIO NORMATO
Mostra altri risultati Nascondi altri risultati su punti stazionari (1)
Mostra Tutti

Tricomi Francesco Giacomo

Dizionario delle Scienze Fisiche (1996)

Tricomi Francesco Giacomo Trìcomi Francesco Giacomo [STF] (Napoli 1897 - Torino 1978) Prof. di analisi matematica nell'univ. di Firenze (1925) e poi di Torino (1928). ◆ [ANM] Approssimazione di T.: v. [...] : I 78 d. ◆ [ANM] Equazione di T.: equazione differenziale alle derivate parziali del secondo ordine, lineare, a due variabili indipendenti, che rappresenta il prototipo delle equazioni di tipo misto: v. equazioni differenziali alle derivate parziali ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Tricomi Francesco Giacomo (5)
Mostra Tutti

analisi non lineare

Enciclopedia on line

Ramo della matematica che si occupa delle tematiche legate al calcolo delle variazioni, affrontando problemi nei quali non sono direttamente applicabili i metodi classici dell'analisi lineare. Abstract [...] di approfondimento da Analisi non lineare: metodi variazionali di Antonio Ambrosetti (Enciclopedia della Scienza e della minimo del calcolo delle variazioni: si cerca una soluzione dell’equazione di Euler-Lagrange e poi si prova che essa fornisce ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DIFFERENZIALE – PROBLEMA ISOPERIMETRICO – ANALISI MATEMATICA

sistema

Dizionario delle Scienze Fisiche (1996)

sistema sistèma [Der. del lat. systema, dal gr. sy´stema "insieme di cose", che è da synístemi "riunire"] [LSF] (a) Oggetto che, pur essendo costituito da più elementi interconnessi e interagenti tra [...] trascendenti, differenziali, integrali) alle quali le incognite devono soddisfare contemporaneamente (la terminologia delle equazioni si estende ai s. di equazioni: s. lineare, grado di un s., ecc.). ◆ [ELT] [INF] S. di file: v. calcolatori, sistemi ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ACUSTICA – ASTROFISICA E FISICA SPAZIALE – BIOFISICA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – FISICA NUCLEARE – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
1 2 3 4 5 6 7 8 ... 11
Vocabolario
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
equazióne
equazione equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali