Geometria
Ryoichi Kobayashi e Luigi Ambrosio
Giovanni Bellettini
(XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391)
Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] valga il sistema diequazioni paraboliche
ove Ht(x)=HΓt(x)νΓt(x) è il vettore curvatura media di Γt in x. Al di là dell'approccio parametrico, di tipo lagrangiano, è anche utile adottare un punto di vista più intrinseco, di tipo euleriano. A tale ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] . Dato che le geodetiche appaiono come punti critici di certi funzionali, il calcolo delle variazioni, che risale a L. Euler e J. L. Lagrange, è uno strumento naturale di ricerca. L'esistenza di geodetiche chiuse, in relazione a problemi dinamici, è ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] = 0 è l'equazione affine della curva, l'integrale
dx è olomorfo sulla curva se e solo se P(x, y) = 0 è l'equazionedi un'aggiunta della curva =
dove e (Tg / Γ) è la solita caratteristica diEulero. In ogni caso Tg non è omogeneo: tutti i suoi ...
Leggi Tutto