L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] quanto profondamente egli fosse uomo del suo tempo. Il suo interesse iniziale riguarda i sistemi di equazioni lineari alle derivateparziali, analoghi a quelli studiati da Jacobi nella dinamica. Non è facile determinare un insieme completo di ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] di calcolo delle variazioni. Egli mostrò che la funzione che definiva la superficie doveva soddisfare un'equazione alle derivateparziali. Nonostante la natura geometrica del problema, i metodi di Lagrange erano tipicamente analitici; tuttavia poco ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] "per quanto riguarda la generalità e il rigore" dei metodi usati da Fourier nell'integrazione delle equazioni differenziali alle derivateparziali. Così, contrariamente all'uso, la memoria vincitrice non fu pubblicata, e apparve a stampa solo nel ...
Leggi Tutto
L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare
June Barrow-Green
Il problema dei tre corpi e la stabilità del Sistema solare
Questo capitolo illustra, a grandi [...] del moto di un qualsiasi sistema con n gradi di libertà mediante n coppie di equazioni alle derivateparziali del primo ordine:
dove qi rappresenta le coordinate generalizzate, pi sono i momenti generalizzati e H=H(qi,pi) è la funzione hamiltoniana ...
Leggi Tutto
L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica
Oscar Sheynin
Lo sviluppo della teoria della probabilità e della statistica
I primi sviluppi del calcolo delle [...] modello di Ehrenfest
Nel 1811 Laplace affrontò un particolare problema legato alle estrazioni da urne. L'equazione differenziale alle derivateparziali che ne ricavò era notevole di per sé, ma il problema sarebbe diventato estremamente importante per ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] differenziali e l'obiettivo quello di sviluppare una teoria della loro integrazione (e di quella delle equazioni differenziali alle derivateparziali). Lie si rende conto ben presto di "poter determinare tutti i gruppi continui di trasformazioni in ...
Leggi Tutto
Solitoni
Francesco Calogero
SOMMARIO: 1. Introduzione: cenno storico. 2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier. 3. L'equazione di Korteweg-de Vries. 4. La [...] di Fourier, û(k, t) exp(ikx), e sul fatto che, quando la u(x, t) evolve secondo l'equazione alle derivateparziali lineare a coefficienti costanti (1), le sue componenti di Fourier subiscono semplicemente una traslazione uniforme, ciascuna con la ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...]
Nella maggior parte dei problemi che sorgono nelle applicazioni alle scienze naturali si arriva a equazioni alle derivateparziali, quali:
Queste equazioni erano il punto di arrivo per interi settori dell'analisi moderna, come ad esempio la ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] e che è l'inviluppo della famiglia di superficie soluzione completa. Con questi nuovi concetti Lagrange affronta lo studio delle equazioni alle derivateparziali non lineari del primo ordine, del tipo
[85] q=f (x,y,z,p),
e cerca di determinare p in ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] (ai,bi,ci) e (xi,yi,zi) oltre al tempo t) e imporre a essa di soddisfare in modo identico le equazioni differenziali alle derivateparziali [21*]. È sufficiente invece considerare S come funzione di 3n+1 quantità (xi,yi,zi e t) e richiedere che essa ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
hessiano
〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...