L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] Riccati generalizzata
[48] dy=R(x)dx+P(x)ydx+Q(x)y2dx,
dimostra che, noti due integrali particolari, l'integrazione di tale equazione si può ricondurre alle quadrature. Euler presenta inoltre negli anni 1762-1763 una nuova dimostrazione per ricavare ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] S:
[23] S=V-H∙t.
La funzione principale S si può introdurre anche mediante l'integrale [19]. Poiché essa soddisfa la [18], dalla [20] si ottengono per S equazioni differenziali analoghe alle [21], e alle [22]:
Nel Second essay Hamilton deduce tra l ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] modello risulta del tipo
dove V(X)=∑giXi è il potenziale. Per calcolare questo integrale si può usare il metodo dei polinomi ortogonali. Nel fare ciò l'equazione di Toda fa la sua comparsa. Passando da parametri discreti a parametri continui si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] p. 66)
Il quarto capitolo presenta la teoria delle equazioni differenziali per le funzioni vettoriali. Si stabiliscono i teoremi di continue definite in E; per f∈C(E), μ(f) è l'integrale di f rispetto a μ. Si considerano le misure positive e la norma ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] accennato. Altre questioni di analisi numerica riguardano la soluzione approssimata di equazioni differenziali, la tabulazione di funzioni speciali (integrali ellittici e loro funzioni inverse, funzioni ellittiche, denominate più tardi funzioni ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] di Laplace Δu(x)=0, le cui soluzioni sono dette funzioni 'armoniche', è l'equazione di Euler dell'integrale di Dirichlet. Poiché tale funzionale è convesso, se φ è abbastanza regolare le soluzioni del problema di minimo per D(u) con condizione ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] delle proprietà topologiche delle superfici e alla teoria degli integrali semplici e doppi, nella quale è evidente l' Re(s)=1/2 segue facilmente da quella che si chiama 'equazione funzionale della funzione zeta', ma l'ipotesi di Riemann non è ...
Leggi Tutto
L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti
Craig G. Fraser
Meccanica dei continui e dei sistemi discreti
Origine dei concetti di sforzo e di deformazione
La teoria matematica [...] in un modo particolare, vale a dire come una quantità calcolata lungo una delle curve soluzione delle equazioni differenziali dinamiche associate. L'integrale che ne risulta si può considerare come una funzione del tempo t e dei valori estremi delle ...
Leggi Tutto
L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi
Craig Fraser
Michiyo Nakane
La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi
La teoria di Hamilton-Jacobi, [...] otteniamo:
Poiché S è calcolata lungo una curva che è soluzione delle equazioni dinamiche, il termine integrale nell'equazione [14] si riduce a zero e otteniamo quindi l'equazione:
Dato che S è funzione delle qi, vale l'identità:
Confrontando i ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] , dipendenti dai quadrati delle distanze e dai prodotti delle loro masse, Laplace derivò un'equazione differenziale del secondo ordine per V=λ1−3λ2+2λ3, il cui integrale primo dV/dt si mostrò suscettibile d'una soluzione oscillante attorno a V=180 ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...