intrinseco
intrìnseco [agg. (pl.m. -ci, ant. -chi) Der. del lat. intrinsecus, avv. "all'interno"] [FAF] Di grandezze o proprietà relative a un certo sistema le quali dipendono dalla natura e dalla struttura [...] la conduzione elettrica competente a un semiconduttore i. (v. oltre). ◆ [GFS] Coordinate i.: v. geodesia: III 15 d. ◆ [ALG] Equazioni i. di una curva sghemba: quelle che danno la flessione e la torsione della curva in funzione dell'ascissa curvilinea ...
Leggi Tutto
Noether Max
Noether 〈nö´öter〉 Max [STF] (Mannheim 1844 - Erlangen 1921) Prof. di matematica nell'univ. di Heidelberg (1874) e poi (1875) in quella di Erlangen; socio straniero dei Lincei (1891). ◆ [ALG] [...] caso particolare l=m=n, A e B risultano due polinomi di grado zero, e cioè due numeri, e si ottiene perciò che l'equazione di ogni curva algebrica di ordine n che passi per i punti comuni a due date curve algebriche di ordine n può ottenersi mediante ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] 384 f. ◆ [MCC] Inversione del teorema di L.-Dirichlet: v. stabilità del moto: V 579 d. ◆ [ANM] Metodo di L.: v. equazioni differenziali ordinarie nel campo reale: II 453 b. ◆ [ANM] Moltiplicatori di L.: v. variazioni, calcolo delle: VI 470 b. ◆ [ANM ...
Leggi Tutto
trasporto
traspòrto [Atto ed effetto del trasportare (→ trasportatore)] [ALG] [ANM] Il passaggio di uno o più dei termini da uno all'altro membro di un'e-quazione, cambiando il loro segno; non altera [...] grandezza (per es., il gradiente di densità nel t. di materia, il gradiente di energia in altri casi); si chiamano equazioni del t. quelle che legano tra loro le grandezze che intervengono in un fenomeno di trasporto e coefficienti di t. i ...
Leggi Tutto
autovalore
autovalóre [Comp. di auto- e valore] (a) [ALG] [ANM] (a) Data una trasformazione lineare f di uno spazio vettoriale V in sé stesso, è uno scalare s tale che, per qualche v∈V vale la relazione [...] di proporzionalità s, che è detta a. di f associato all'autovettore v. (b) Per estensione, nella teoria delle equazioni differenziali o integrali (che spesso possono essere espresse in termini di applicazioni o trasformazioni lineari di uno spazio ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] ◆ Disuguaglianza di H.: è Σm,n=m,n=0 ambn/(m+n)1, (1/p)+(1/q)=1, am,bn>0. ◆ Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. ◆ Mattone di ...
Leggi Tutto
parallelismo
parallelismo [Der. di parallelo] [ALG] La condizione di enti (rette, vettori, piani, ecc.) che sono paralleli tra loro o ad altri enti. ◆ [FTC] In varie discipline tecniche, modo di funzionare [...] ax+by+c=0 e a'x+b'y+c'=0, la condizione di p. è ab'-ba'=0; (b) per due piani di equazioni ax+by+cz+d=0 e a'x+ b'y+c'z+d'=0, è ab'-a'b=ac'-a'c=bc'-b'c=0; (c) per una retta di parametri direttori l, m, n e un piano ax+by+cz+d=0, è al+bm+cn=0; (d ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] c. più elementarmente noti, se, per es., C è il c. razionale, C̅ è il cosiddetto c. dei numeri algebrici (radici di equazioni a coefficienti razionali). Dire che non tutti i numeri reali sono algebrici, equivale a dire che il c. reale non può essere ...
Leggi Tutto
ordinario
ordinàrio [agg. Der. del lat. ordinarius "conforme all'ordine", da ordo -inis "ordine"] [LSF] Qualifica di un ente che non abbia alcunché di speciale, in contrapp. a enti omogenei provvisti [...] . ◆ [ALG] Derivata o.: in contrapp. a derivata covariante, parziale e altre derivate "particolari", usata spec. per distinguere le equazioni alle derivate o. da quelle alle derivate parziali. ◆ [ALG] Punto o.: punto di una curva o di una superficie o ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] ’algebra e a nuove comprensioni sui numeri. Si è detto che le intersezioni tra una retta e un cerchio conducono a equazioni di secondo grado: ciò corrisponde al fatto che l’intersezione consiste al più di due punti; talvolta l’intersezione consta di ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...