• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
233 risultati
Tutti i risultati [3984]
Diritto [480]
Storia [385]
Biografie [386]
Temi generali [348]
Fisica [289]
Arti visive [302]
Geografia [211]
Archeologia [284]
Medicina [240]
Economia [238]

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] teoria moderna dei processi aleatori. Il teorema d'estensione di Carathéodory, relativo a una misura di probabilità definita su un'algebra di eventi, suggerisce l'introduzione della nozione di 'spazio di probabilità di Kolmogorov' (Ω‚ℋ,P), in cui Ω è ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] finita. Al contrario, se la dimensione è infinita si presenta un nuovo fenomeno che è perfettamente analogo a quello delle estensioni non ramificate di campi p-adici. Compaiono fattori non banali, che commutano con le rappresentazioni in uno spazio ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] specializzazione e divisione dei campi di ricerca. Le antiche teorie si erano arricchite di nuovi risultati, teorie interamente nuove si erano costituite, in rapida e autonoma crescita. Al tempo stesso, la ricchezza, l'estensione e la varietà delle ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Vicino Oriente antico. La matematica

Storia della Scienza (2001)

Vicino Oriente antico. La matematica Jöran Friberg La matematica Gli esercizi metro-matematici nel III millennio La ricerca sulla matematica mesopotamica conobbe il suo periodo pionieristico a partire [...] delle semisomme dei due lati orizzontali e di quelli verticali fosse vicino a un rapporto interessante (3/2). A questo scopo potrebbe essere stato utilizzato l'intelligente procedimento dell''estensione del campo' (Tav. II), il quale, fra l'altro ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] di equazioni di interesse applicativo, almeno nel campo delle equazioni alle derivate parziali in due variabili (una temporale e una sola spaziale, o, in qualche caso, due variabili spaziali). L'estensione di questa o di analoghe tecniche al caso di ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] ;cT con c>0 costante (Hardy e Littlewood, 1921); 3) se N(T) è il numero di tutti gli zeri di ζ(s) contenuti nel rettangolo 0≤Re(s)≤1, 0⟨Im(s)≤T, allora N0(T)>cN( in fattori lineari in un'estensione del campo dei numeri razionali (Albert Thoralf ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] da un graduale venir meno del loro carattere di evidenza e da una conseguente problematizzazione, precisazione e chiarificazione delle condizioni di applicabilità e della estensione dei campi di applicazione. Il principio generale delle velocità ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è relativo ai corpi commutativi. Vi sono definiti i campi primi e la caratteristica. Si sviluppa la teoria delle estensioni e si espone il teorema di Dedekind, la derivazione nei campi e la teoria di Galois. Il capitolo termina con lo studio delle ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] Per esempio, l'insieme dei numeri pari corrisponde alla successione 1010101… I lavori di Büchi hanno aperto un nuovo campo di ricerca, in due direzioni. Una riguarda l'estensione della teoria degli automi finiti a parole infinite (v. oltre); l'altra ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

Programmazione lineare

Enciclopedia delle scienze sociali (1997)

Programmazione lineare Robert Dorfman di Robert Dorfman  Programmazione lineare Introduzione La programmazione lineare è una famiglia di metodi matematici per individuare i modi più redditizi o in [...] lineare si è successivamente allargato a una gamma pressoché illimitata di problemi economici, aziendali, sociali e scientifici. Nonostante questa notevole estensione del campo di applicazione, e sebbene le iniziali restrizioni matematiche siano in ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – METODI TEORIE E PROVVEDIMENTI
TAGS: DIMENSIONE' DI UNO SPAZIO VETTORIALE – PROGRAMMAZIONE MATEMATICA – PROGRAMMI PER CALCOLATORE – ALGORITMO DEL SIMPLESSO – UNIVERSITÀ DI PRINCETON
Mostra altri risultati Nascondi altri risultati su Programmazione lineare (4)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 24
Vocabolario
estensióne
estensione estensióne s. f. [dal lat. extensio -onis, der. di extendĕre «estendere», part. pass. extensus]. – 1. a. L’azione e il risultato dell’estendere, in senso proprio e fig.: e. di un corpo elastico; e. di un diritto, di una concessione,...
Alzare l’asticella
alzare l’asticella loc. v.le 1. Rendere più impegnativo fare qualcosa, spingere qualcuno a raggiungere un obiettivo aumentando il livello di difficoltà del compito, dell’azione, dell’impresa. 2. Per estensione, detto di un’azione o di una persona,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali