SPAZI ASTRATTI
Sandro FAEDO
. L'analisi matematica classica studia le proprietà delle funzioni di una o più variabili numeriche. Tali funzioni sono determinate dai valori assunti dalla variabile x in [...] cui è d (x, y)〈δ. In tali spazî si ha una misura (distanza) della vicinanza fra due elementi.
Esempî di spazî metrici:
a) Spazio euclideo a n dimensioni. - L'insieme I è dato dalle ennuple x=(x1, x2, .. xn) di numeri reali e la distanza da:
b) Spazio ...
Leggi Tutto
riemanniano
riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] del tensore di Riemann (←); questo permette di calcolare certe "curvature", che sono tutte nulle nel caso di uno spazio euclideo, mentre in generale danno una misura di quanto la varietà r. e la relativa geometria si discostino dall'ordinario spazio ...
Leggi Tutto
Letteratura
Disciplina che ha per oggetto lo studio della versificazione, fondata su un complesso di norme che variano secondo la natura di ciascuna lingua e le convenzioni che si stabiliscono in rapporto [...] espressa dalla formula
d(a, c) ≥ d(a, b)+d(b, c)
e così chiamata con riferimento al caso elementare in cui A è il piano euclideo e si consideri il triangolo di vertici a, b, c; infine deve risultare d(a, b)=0 nel solo caso a=b; se invece si esclude ...
Leggi Tutto
Matematico, nato a Mantova il 5 gennaio 1871. Laureatosi a Torino nel 1892, dove ebbe a maestri C. Segre e G. Castelnuovo, seguì nel 1893-94 a Gottinga i corsi di F. Klein. Titolare di algebra complementare [...] edizioni e varie ristampe; Lezioni di geometria analitica e proiettiva (in coll. con A. Terracini, Torino 1930; Complementi di geometria, Torino 1934-35; Geometria non euclidea. Introduzione geometrica alla teoria della relatività, Bologna 1935). ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. La matematica ebraica
Tony Lévy
La matematica ebraica
Gli studiosi ebrei arabofoni che vivevano nei paesi dell'Islam rappresentavano una [...] come revisore). Furono inoltre tradotti l'Ottica e il Libro degli specchi, da non confondere con la Catottrica, altra opera pseudo-euclidea e con lo Šarḥ ṣadr al-maqāla al-ūlā wa-'l ḫāmisa min kitāb Uqlīdis (Commento all'introduzione dei Libri I e ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] il cui precedente esemplare era stato quello della geometria euclidea, due millenni prima.
Predicativismo: Poincaré e Weyl
Poincaré mediante coppie di numeri reali, e della geometria euclidea dello spazio, nel sistema delle coordinate di numeri ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] da Minkowski e Hilbert, nel quale la regione è convessa e le rette all'interno di essa sono segmenti di retta euclidea.
La teoria dei numeri e la geometria erano argomento di ventitré delle sessanta tesi di dottorato scritte dagli allievi di Hilbert ...
Leggi Tutto
topologia
topologìa [Comp. di topo- e -logia] [LSF] Per estensione del signif. nell'algebra (v. oltre), il termine indica anche la forma intrinseca di una struttura, cioè la forma che attiene alle proprietà [...] , σ-debole, della norma, forte, *forte, σ-forte, σ-*forte): v. algebre di operatori: I 97 c e Tab. 4.1. ◆ [ALG] T. euclidea: v. spazio topologico: V 468 a. ◆ [ALG] T. indotta e t. prodotto: v. spazio topologico: V 468 e, 470 a. ◆ [ALG] T. relativa ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Le tradizioni matematiche
Roshdi Rashed
Le tradizioni matematiche
Capire lo sviluppo della matematica in un periodo di sette secoli, stabilire [...] trigonometria, l'algebra alla geometria, alla teoria euclidea dei numeri, ecc. Queste applicazioni furono sempre in modo puramente aritmetico, cioè nel senso della dimostrazione euclidea così come viene condotta nei libri 'aritmetici' degli Elementi ...
Leggi Tutto
METAMATEMATICA
Alberto Pasquinelli
Aldo Marruccelli
. Il problema della metamatematica. - Come disciplina specifica, la m. deve la propria genesi (e la propria denominazione) a D. Hilbert, il quale [...] la costruzione effettuata da E. Beltrami (1868) e dallo stesso Hilbert (1899) di modelli all'interno della geometria euclidea, nonché, rispettivamente, della teoria dei numeri reali per provare la non contradittorietà di determinate geometrie non ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...