La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] Palais e Smale. Tale condizione vale per una funzionef:X→ℝ di classe almeno C2 se le ;0 e per ogni v∈V soddisfi a(v,v)≥α∥v∥2 ‒ se K⊂V è convesso non vuoto, e v→(f,v) una forma lineare continua su V, allora esiste un unico u∈K tale che a(u, ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] più piccole di un numero reale positivo ω. La funzionef(x,y) sia limitata inferiormente e superiormente in ciascun mostrò che, se la regione considerata nel problema è convessa, allora il problema di Dirichlet possiede in effetti una soluzione ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] coefficienti diagonali sono preponderanti, esso si scrive:
[12] Xn+1=D-1(E+F)Xn+D-1B.
Sia nel metodo di Jacobi sia in quello di Gauss-Seidel fatto (di cui si è già detto sopra) che una funzioneconvessa è al di sotto delle sue corde e al di sopra ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950
Angelo Guerraggio
L'economia matematica 1870-1950
Di matematica sociale comincia a parlare Condorcet nella Francia [...] da Wald, il quale, in realtà, analizza due modelli leggermente diversi, con ipotesi differenti sulla funzionef. Nel primo introduce una condizione di convessità e di non saturazione, che in parte poi modifica richiedendo che, per un incremento Δy ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] dal matematico ungherese Alfréd Haar (1885-1933), in una nota del 1927. Haar considerò una qualunque funzioneF di n variabili, non negativa e strettamente convessa, cioè
per ogni x∈ℝn e per ogni λ=(λ1,...λν)∈ℝn−{0}.
Per ogni aperto limitato ...
Leggi Tutto
Matematica
Insieme alla retta e al piano, uno degli enti fondamentali della geometria, la cui nozione intuitiva corrisponde all’idea di una posizione sulla retta, nel piano o nello spazio (si tratta cioè [...] esterno Rispetto a una curva piana convessa (o a una superficie convessa), è un p. per il il p. Didot, creato dal tipografo francese F.-A. Didot nel 18° sec.; esso che si tralasciano (se hanno questa funzione, i puntini sono talvolta racchiusi in ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] del sottogradiente. F.H. Clarke introduce il concetto di sottogradiente. Questo oggetto, definito inizialmente per funzioni localmente lipschitziane, e subito generalizzato alle funzioni a valori finiti, coincide nel caso di funzioniconvesse con il ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] (VII-XII); (e) algebra (XIII, XIV, XVII); (f) geometria algebrica (XV, XVI); (g) calcolo delle variazioni ( , nel quale la regione è convessa e le rette all'interno di di Riemann secondo cui gli zeri non banali della funzione zeta
[1] ζ(s) = 1+1/ ...
Leggi Tutto
occhio
òcchio s. m. [lat. ŏcŭlus]. – 1. a. In anatomia, organo di senso, pari, caratteristico dei vertebrati, che ha la funzione di ricevere gli stimoli luminosi e di trasmetterli ai centri nervosi dando origine alle sensazioni visive; è costituito...
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...