• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
117 risultati
Tutti i risultati [1848]
Analisi matematica [117]
Diritto [303]
Matematica [250]
Fisica [211]
Biografie [215]
Temi generali [147]
Storia [136]
Economia [104]
Fisica matematica [105]
Arti visive [85]

Helmholtz Hermann Ludwig Ferdinand von

Dizionario delle Scienze Fisiche (1996)

Helmholtz Hermann Ludwig Ferdinand von Helmholtz 〈hèlmolz〉 Hermann Ludwig Ferdinand von [STF] (Potsdam 1821 - Berlino 1894) Prof. di fisiologia nell'univ. di Königsberg (1849) e di anatomia e fisiologia [...] al contorno, la distribuzione che soddisfa le equazioni del moto è quella per la quale l'integrale esteso a tutto il volume della funzione di dissipazione (prodotto scalare del gradiente di velocità per sé stesso) ha il valore minimo. ◆ [OTT ... Leggi Tutto
CATEGORIA: ACUSTICA – ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – OTTICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI AL CONTORNO – POTENZIALI CHIMICI – LAVORO MECCANICO – ELETTRODINAMICA
Mostra altri risultati Nascondi altri risultati su Helmholtz Hermann Ludwig Ferdinand von (1)
Mostra Tutti

Legendre Adrien-Marie

Dizionario delle Scienze Fisiche (1996)

Legendre Adrien-Marie Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] in esse si ponga ϑ=š/2, le espressioni ottenute si chiamano integrali ellittici completi di L.; questi ultimi sono importanti in quanto ogni integrale del tipo ∫R(x)P1/2dx, con R funzione razionale e P polinomio in x di terzo o quarto grado privo di ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE OMOGENEA – ÉCOLE POLYTECHNIQUE – COORDINATE SFERICHE – RADICI MULTIPLE – HAMILTONIANA
Mostra altri risultati Nascondi altri risultati su Legendre Adrien-Marie (3)
Mostra Tutti

Dirichlet Peter Gustav Lejeune

Dizionario delle Scienze Fisiche (1996)

Dirichlet Peter Gustav Lejeune Dirichlet 〈diriklé〉 Peter Gustav Lejeune [STF] (Düren, presso Aquisgrana, 1805 - Gottinga 1859) Prof. di matematica nell'univ. di Berlino, succedette a Gauss nell'univ. [...] f(x)=0 per x irrazionale, f(x)=1 per x razionale, che è discontinua ovunque. ◆ [ANM] Integrale di D.: di una funzione f(x) l'espressione (2π)-1∫x+πx-π f(ξ){ sin[(n+1/2)(ξ-x)]/sin[(1/2)(ξ-x)]}dx; rappresenta la somma parziale Sn(x) di una serie ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: DISCONTINUITÀ DI PRIMA SPECIE – SUCCESSIONE MONOTONA – FUNZIONE CONTINUA – SERIE DI FOURIER – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su Dirichlet Peter Gustav Lejeune (3)
Mostra Tutti

formule di Newton-Cotes

Enciclopedia della Scienza e della Tecnica (2008)

formule di Newton-Cotes Alfio Quarteroni Per calcolare numericamente l’integrale definito I(f)=∫∮]] f (x)dx, le formule di Newton-Cotes si ottengono sostituendo la funzione integranda f(x) con un polinomio [...] quadratura di Newton-Cotes su n+1 nodi. Per es., indicando ancora con I(f{[) l’integrale approssimato, la formula dei trapezi composita si leggerà Se la funzione integranda è sufficientemente regolare, si può dimostrare che l’errore E{[(f)=I(f)−I(f ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FORMULE DI NEWTON-COTES – POLINOMIO DI LAGRANGE – INTEGRALE DEFINITO – ALFIO QUARTERONI – INTERPOLAZIONE
Mostra altri risultati Nascondi altri risultati su formule di Newton-Cotes (1)
Mostra Tutti

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] di R.: v. Riemann, superfici di: V 6 b. ◆ [ANM] Funzione zeta di R.: v. funzioni di variabile complessa: II 781 d. ◆ [ANM] Integrabilità secondo R.-Stieltjes: v. misura e integrazione: IV 4 a. ◆ [ANM] Integrale di R.: v. misura e integrazione: IV 3 f ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti

trasformata di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Fourier Luca Tomassini Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] da L1(ℝn,ℂ) a C(ℝn,ℂ). L’esistenza dell’inversa (ossia dell’integrale [3]) non è però garantita poiché la funzione ff∼(p) non è necessariamente sommabile. Anche nel caso [5] formula l’integrale in [1] esiste, ma inoltre ∣∣f∼(p)∣∣2=∣∣f(x)∣∣2: la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – OPERATORE LINEARE CONTINUO – EQUAZIONI DIFFERENZIALI – FUNZIONI GENERALIZZATE – EQUAZIONI ALGEBRICHE
Mostra altri risultati Nascondi altri risultati su trasformata di Fourier (1)
Mostra Tutti

trasformata di Laplace

Enciclopedia della Scienza e della Tecnica (2008)

trasformata di Laplace Luca Tomassini Nozione introdotta da Pierre-Simon de Laplace nel suo famoso Théorie analitique des probabilités (1812) e da lui utilizzata per risolvere equazioni differenziali [...] di tutti gli s tali che Res>σc. Se l’integrale non converge mai si scrive allora σc=+∞, se converge ovunque σc=−∞. Nella regione di convergenza Res>σc, L(s) è una funzione olomorfa e si ha (analogamente al caso della trasformata di Fourier) ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE A VARIAZIONE LIMITATA – INTEGRABILE SECONDO LEBESGUE – PIERRE-SIMON DE LAPLACE – EQUAZIONI DIFFERENZIALI – ASCISSA DI CONVERGENZA
Mostra altri risultati Nascondi altri risultati su trasformata di Laplace (2)
Mostra Tutti

Lagrange Giuseppe Luigi

Dizionario delle Scienze Fisiche (1996)

Lagrange Giuseppe Luigi Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] coniugati P e P' è nyα=n'y'α' (v. fig.). ◆ [OTT] Invariante integrale di L.: v. ottica geometrica: IV 384 f. ◆ [MCC] Inversione del teorema di L ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DIFFERENZIALE – ACCADEMIA DI BERLINO – INDICE DI RIFRAZIONE – ÉCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Lagrange Giuseppe Luigi (5)
Mostra Tutti

operatori hermitiani

Enciclopedia della Scienza e della Tecnica (2008)

operatori hermitiani Luca Tomassini Sia A:ℋ→ℋ un operatore lineare continuo (limitato) di uno spazio di Hilbert in sé e siano (∙,∙) il prodotto scalare di ℋ e ∣∣∙∣∣ la norma da esso indotta. Fissato [...] fenomeno corrisponde, approssimativamente, la trasformazione della serie in [1] in un integrale [3] formula dove dP(λ) è detta misura spettrale. La definizione del concetto di funzioni di un operatore hermitiano resta analoga ed è alla base del ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE LINEARE CONTINUO – PROIEZIONI ORTOGONALI – OPERATORE HERMITIANO – MATRICE HERMITIANA – ANALISI FUNZIONALE
Mostra altri risultati Nascondi altri risultati su operatori hermitiani (2)
Mostra Tutti

Dirac Paul Adrien Maurice

Dizionario delle Scienze Fisiche (1996)

Dirac Paul Adrien Maurice Dirac 〈dirèk〉 Paul Adrien Maurice [STF] (Bristol 1902 - m. in Florida 1984) Prof. di matematica nell'univ. di Cambridge (1932); ebbe il premio Nobel per la fisica nel 1933 per [...] quantistica: II 298 d. ◆ [ANM] Delta di D.: lo stesso che funzione delta di D. (v. oltre). ◆ [EMG] Equazione di D.: v. (v. sopra). ◆ [MCQ] Propagatore libero del campo di D.: v. integrale sui cammini: III 232 b. ◆ [FSN] Relazione di D.: v. monopolo ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
TAGS: ELETTRODINAMICA QUANTISTICA – MECCANICA QUANTISTICA – MONOPOLO MAGNETICO – TEORIA DEI CAMPI – COSTANTI FISICHE
Mostra altri risultati Nascondi altri risultati su Dirac Paul Adrien Maurice (3)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 12
Vocabolario
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
filo-integralista
filo-integralista agg. Che sostiene le posizioni più radicali e intolleranti. ◆ Giancesare Flesca [...] assistendo da un terrazzo alla scena atroce di un cecchino che sparava su dei bambini si beccò una fucilata dalla polizia. Non che questo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali