gradiente La variazione per unità di lunghezza che una grandezza subisce da un punto all’altro dello spazio lungo una certa direzione. In analisi vettoriale, data una funzione scalare del posto, U (x, [...] il vettore v=gradU, di componenti cartesiane
La funzione U si chiama potenziale di v. Dato un campo vettoriale v (x, y, z), non è però detto che v possa considerarsi sempre come il g. di una funzione scalare, cioè che v ammetta sempre un potenziale ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] pn+1−pn in termini di pn. Dall'ipotesi di Riemann per la funzione ζ, tuttora indimostrata, segue
se α>1/2. L'inglese Martin tratta di eventi a tre getti che rivelano la natura vettoriale dei gluoni.
Le teorie dei polimeri e dei cristalli ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] un ambito più generale ‒ la teoria degli operatori differenziali ellittici tra fibrati vettoriali complessi ‒ il celebre teorema di Lefschetz del punto fisso: se f è una funzione di classe C∞ che applica una varietà differenziabile compatta in sé, il ...
Leggi Tutto
L'Ottocento: fisica. La fisica matematica francese e l'elettrodinamica di Ampere
Friedrich Steinle
La fisica matematica francese e l'elettrodinamica di Ampère
Elettricità e galvanismo nel primo Ottocento
Nel [...] . La legge dell'inverso del quadrato era già contenuta nella forma stessa della funzione potenziale:
[1] V=∫dm(x,y,z)/r,
dove dm è l per ciascuna coordinata: gli strumenti dell'analisi vettoriale sarebbero stati sviluppati soltanto verso la metà del ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] più tardi il polinomio di Jones) nella forma di una funzione di partizione della meccanica statistica, e Vaughan Jones scoprì ket ∣b〉 viene formalizzata matematicamente utilizzando uno spazio vettoriale V (uno spazio di Hilbert, che può anche ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] relazioni tra la matrice antisimmetrica F e i campi vettoriali elettrico E e magnetico B sono espresse (in opportune Si può verificare che Tr(F*F) è della forma divY, per una funzione Y opportuna, e pertanto, per il teorema di Gauss, il suo integrale ...
Leggi Tutto
La grande scienza. Sistemi dinamici
Valentin S. Afraimovich
Leonid A. Bunimovich
Jack K. Hale
Sistemi dinamici
Il nostro Universo è formato da oggetti che si muovono nello spazio e le cui caratteristiche [...] .
Consideriamo dapprima un sistema dinamico continuo generato dalle soluzioni di un'equazione differenziale ordinaria
La funzione f è il 'campo vettoriale' che definisce il sistema dinamico. Sia φtx0 la soluzione per un punto iniziale x0 al ...
Leggi Tutto
onda
ónda [Der. del lat. unda] [LSF] Fenomeno fisico per cui una perturbazione prodotta localmente in un mezzo si propaga a distanza, trasportando lontano energia e informazioni circa le sue caratteristiche [...] più generale dell'equazione d'o. è quella di uno sviluppo in serie di funzioni del tipo precedente, una per ciascuna componente armonica. ◆ [GFS] Equazione scalare e vettoriale delle o. sismiche: v. sismologia: V 246 e. ◆ [LSF] Fase di un'o.: nozione ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] 189 e. ◆ [ALG] P. polidromo: lo stesso che p. scalare di un campo non conservativo, che è una funzione di punto a infiniti valori: v. sopra: P. di un campo vettoriale. ◆ [CHF] P. redox: v. pila chimica: IV 512 a. ◆ [MCQ] P. regolare: v. diffusione da ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] C. stocastico: v. campi, teoria quantistica dei: I 479 c. ◆ [ALG] C. vettoriale: regione dello spazio in ciascun punto della quale è definito un vettore, che risulta quindi essere una funzione del posto e in generale anche del tempo (cioè le sue tre ...
Leggi Tutto
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...