Solitoni
Francesco Calogero
SOMMARIO: 1. Introduzione: cenno storico. 2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier. 3. L'equazione di Korteweg-de Vries. 4. La [...] = u(x, t), sicché la sua definizione esplicita è data dalla formula
che specifica l'azione dell'operatore integro-differenziale L- sulla generica funzione F(x) (annullantesi per x → + ∞).
Ponendo ora f = 1 (per semplicità) e g(z) = − a(z) nelle (33 ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] ; e se (X, Σ, μ) è uno spazio di misura, lo spazio lineare di tutte le (ovvero, classi di equivalenza di) funzioni X → K p-integrabili (1 ≤ p 〈 + ∞), con la norma
diventa uno spazio di Banach, che sarà indicato con Lp (μ).
Un sottoinsieme B ⊂ E si ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] y,z), la forma differenziale dz−pdx−qdy diventi esatta e dunque l'equazione differenziale dz−pdx−qdy=0 sia integrabile. Lagrange osserva che se si conosce una funzione g(x,y,z,a), dove a è un parametro, tale che l'equazione differenziale
[86] g(x,y,z ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] superiore degli ∫*fφkdu, dove k varia nell'insieme delle parti compatte di E; si definiscono le funzioni essenzialmente integrabili. Si studiano le misure definite attraverso le densità numeriche, le misure equivalenti, le misure esterne legate ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] of fluxions. Le sue conclusioni hanno spesso una motivazione geometrica. Per esempio, sommare una serie infinita corrisponde a integrare una funzione a gradini tra zero e infinito, e seguendo un'idea di Stirling si può poi sostituire la n nella ...
Leggi Tutto
gruppi quantistici
Luca Tomassini
Struttura algebrica introdotta e analizzata a partire dagli anni Ottanta del secolo scorso dai matematici russi Ludwig Faddeev e Vladimir Drinfeld e dal giapponese [...] di Faddeev il punto di partenza è l’algebra F(G) delle funzioni a valori complessi sul gruppo di Lie G considerato con prodotto commutativo definito studio di alcuni modelli (sistemi dinamici) integrabili. Trova oggi applicazione in teoria dei campi ...
Leggi Tutto
teorema della divergenza
Luca Tomassini
Una formula nel calcolo di integrali multipli di funzioni di più variabili che stabilisce un legame tra un integrale (di volume) su un dominio n-dimensionale [...] x) (i=1,...,n) in un punto x=(x1,...,xn) di ℝn tale che le ai(x) stesse e le derivate parziali ∂ai(x)/∂xi siano integrabili secondo Lebesgue su un dominio G (per es., continue se G è chiuso e limitato) il cui bordo ∂G sia l’unione di un numero finito ...
Leggi Tutto
Matematico (Tambov 1903 - Mosca 1987), prof. di teoria delle probabilità all'università di Mosca dal 1938 al 1966 e poi direttore dei laboratorî di metodi statistici, membro dell'Accademia delle scienze [...] al problema delle piccole perturbazioni dei sistemi hamiltoniani integrabili. Tra le sue opere: Osnovnye ponjatija teorii teoriju funkcij dejstvitel´nogo peremennogo ("Introduzione alla teoria delle funzioni di una variabile reale", 3a ed. 1938; in ...
Leggi Tutto
INTEGRAZIONE E MISURA
Giorgio Letta
. La moderna teoria dell'i. si occupa del concetto generale di "misura" e del concetto di "integrale" relativo a un'arbitraria misura. Essa costituisce una notevole [...] ogni elemento B di ℬ. La m. λ è detta il prodotto di μ per ν e è denotata con μ ⊗ ν. Per una funzioneintegrabile rispetto a μ ⊗ ν il teorema di Lebesgue-Fubini consente di ricondurre il relativo integrale a un "integrale iterato". La definizione di ...
Leggi Tutto
SPAZI ASTRATTI
Sandro FAEDO
. L'analisi matematica classica studia le proprietà delle funzioni di una o più variabili numeriche. Tali funzioni sono determinate dai valori assunti dalla variabile x in [...] reali tali che sia convergente la serie
e la distanza è definita da
Sia ora I1 l'insieme delle funzioni f(P) di quadrato integrabile secondo Lebesgue in una stessa regione C. Si ottiene un secondo spazio metrico definendo la distanza:
e considerando ...
Leggi Tutto
integrabile
integràbile agg. [der. di integrare]. – Che può essere integrato, che può integrarsi, nelle varie accezioni del verbo: lo stipendio è scarso, ma è i. con gli straordinarî; gruppi, categorie facilmente o difficilmente i. in un ambiente...
integrita
integrità s. f. [dal lat. integrĭtas -atis]. – 1. L’essere integro, intero, intatto; lo stato di una cosa che possiede tutte le sue parti, i proprî elementi e attributi, che conserva intatta la propria unità e natura, o che non ha...