proprio
proprio aggettivo che, attribuito a un ente matematico, ne fornisce una caratterizzazione che dipende dal particolare contesto.
☐ Nella teoria degli insiemi, un insieme A si dice sottoinsieme [...] ’identità o una contraddizione.
☐ In algebra lineare, il valore proprio di una matrice è sinonimo di → autovalore.
☐ In geometriaaffine si distingue tra elementi propri (che possono essere punti, rette, piani), che sono gli ordinari elementi di uno ...
Leggi Tutto
Klein, classificazione delle geometrie di
Klein, classificazione delle geometrie di riorganizzazione della geometria proposta da F. Klein nel cosiddetto programma di → Erlangen (1872). In tale impostazione [...] , quali per esempio le ampiezze degli angoli;
• geometriaaffine: studia le proprietà invarianti rispetto al gruppo delle affinità, quale per esempio il parallelismo;
• geometria proiettiva: studia le proprietà invarianti rispetto al gruppo delle ...
Leggi Tutto
spazio affine
spazio affine spazio caratterizzato dal gruppo delle → affinità (trasformazioni affini) a esso associato. Per le caratteristiche invarianti si veda → geometriaaffine. Dal punto di vista [...] essere definito assiomaticamente, per esempio nel modo che segue. Dato uno spazio vettoriale V su un campo K, si dice spazio affine avente per sostegno V, un insieme A, i cui elementi si dicono punti, associato a una funzione (traslazione) ƒ: A × V ...
Leggi Tutto
Erlangen, programma di
Erlangen, programma di sorta di manifesto programmatico relativo a una diversa impostazione e classificazione della geometria, basata sui gruppi di trasformazione, dovuto a F. [...] intende lo studio di quelle proprietà che non mutano effettuando “movimenti rigidi”, cioè che sono indifferenti al gruppo delle isometrie; per geometriaaffine si intenderà lo studio di quelle proprietà che non mutano effettuando una trasformazione ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] al calcolo tensoriale formale di Ricci-Curbastro e Levi-Civita.
Nel 1918, H. Weyl sviluppò la geometria differenziale affine basata esclusivamente sulla nozione di parallelismo e non sulla metrica riemanniana. Assumendo il punto di vista della ...
Leggi Tutto
geometria finita
geometria finita geometria il cui spazio ambiente è costituito da un numero finito di punti. La geometria euclidea, per esempio, non è finita, poiché una retta del piano euclideo, in [...] coppia di rette ha un punto di intersezione. Sia la geometria del piano affine finito sia quella del piano proiettivo finito possono essere definite assiomaticamente come segue.
Una geometria piana affine è un insieme non vuoto X, i cui elementi sono ...
Leggi Tutto
Diritto. Termine che indica il vincolo tra un coniuge e i parenti dell'altro: non possono dirsi affini i coniugi fra di loro, né i parenti dei due coniugi. L'affinità non ha linee o gradi; tuttavia, per [...] , dipendendo da infiniti parametri o da funzioni arbitrarie.
Per le più recenti ricerche di geometria differenziale affine, v. geometria.
Chimica. - Col nome di affinità s'intende oggi la causa che determina il decorso delle reazioni chimiche (e in ...
Leggi Tutto
affinitaaffinità o trasformazione affine, in geometria, corrispondenza biunivoca tra spazi che ha come invarianti l’allineamento dei punti (è quindi una collineazione poiché muta rette in rette) e il [...] delle due rette unite: rispettivamente, x + y = 0, cioè y = −x, e x − y = 0, cioè y = x. Ciò significa che tale affinità fa corrispondere a ogni punto P appartenente alla retta y = −x un punto P′ sulla medesima retta tale che OP′ = 2OP (perché k1 = 2 ...
Leggi Tutto
stiramento
stiramento in geometria, trasformazione affine che modifica, lungo una fissata direzione, le lunghezze di un dato fattore costante k (detto rapporto di stiramento) lungo una fissata direzione [...] (→ affinità). Il rapporto di stiramento k è detto autovalore della trasformazione. Per esempio, dato un sistema di riferimento Oxy del piano, le equazioni x′ = 2x; y′ = y determinano uno stiramento di rapporto 2 per il quale raddoppiano le lunghezze ...
Leggi Tutto
geometria algebrica
geometria algebrica variante moderna e più astratta della geometria analitica; dato il peso prevalente assegnato alle strutture algebriche (quali, in particolare, anelli, campi e [...] curve e superfici, ambientandole cioè in uno spazio proiettivo e, comunque, nell’ambito della → geometria proiettiva: accanto alle curve e alle superfici algebriche affini si considerano così anche curve e superfici algebriche proiettive, vale a dire ...
Leggi Tutto
piano2
piano2 s. m. [lat. planum «pianura» (propr. neutro sostantivato dell’agg. planus: v. la voce prec.); nel sign. 7 ricalca il fr. plan] (pl. ant. le piànora). – 1. Superficie piana, generalm. orizzontale, ma anche verticale o variamente...
piano1
piano1 agg. e avv. [lat. planus «di superficie uguale; facile, chiaro, intelligibile»]. – 1. agg. a. Che presenta una superficie di andamento uniforme, senza avvallamenti o rilievi: via p., senza salite o discese; terreno p.; il lago...