• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
219 risultati
Tutti i risultati [219]
Matematica [109]
Biografie [38]
Storia della matematica [32]
Fisica [31]
Analisi matematica [25]
Geometria [20]
Algebra [19]
Fisica matematica [20]
Temi generali [13]
Storia della fisica [14]

L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti

Storia della Scienza (2003)

L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti Craig G. Fraser Meccanica dei continui e dei sistemi discreti Origine dei concetti di sforzo e di deformazione La teoria matematica [...] la teoria di Euler dell'equilibrio statico delle curve meccaniche. Secondo la concezione della curva elastica di Euler, il la più notevole delle quali fu lo studio di Rudolf Lipschitz del 1872 sulla geometria differenziale della dinamica non euclidea ... Leggi Tutto
CATEGORIA: STORIA DELLA FISICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] Le origini risalgono al XVII sec., e nel XIX era una delle branche più attive della matematica. I problemi tipici studiati dai geometri differenziali dell'epoca riguardavano curve nel piano e curve e superfici nello spazio. Per esempio, a partire da ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi

Storia della Scienza (2003)

L'Ottocento: astronomia. La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi Craig Fraser Michiyo Nakane La meccanica celeste dopo Laplace: la teoria di Hamilton-Jacobi La teoria di Hamilton-Jacobi, [...] calcolo delle variazioni, le equazioni differenziali ordinarie e alle derivate parziali, la geometria differenziale e calcolata lungo una delle curve che rappresentano le soluzioni delle corrispondenti equazioni differenziali dinamiche. L'integrale ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] della teoria dei numeri all'epoca era ancora quello di una scienza empirica che non poteva competere con le teorie geometriche già ben consolidate o con il calcolo differenziale un polo semplice con residuo 1. Curve di 'genere' superiore L'ultimo ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] Consideriamo la classe Γ delle curve γ: [0, dell'equazione [44] è proseguito ottenendo varie estensioni del risultato precedente ed è ancora oggetto di indagine estremamente vivace. Problemi di geometria differenziale Anche la geometria differenziale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Fermat, ultimo teorema di

Enciclopedia della Scienza e della Tecnica (2007)

Fermat, ultimo teorema di Massimo Bertolin "Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] di spazio vettoriale complesso. Data f(z) in S2(N), il differenziale f(z)dz è invariante per l'azione di Γ0(N) ed è olomorfo sul semipiano esteso X*. Generalizzando la costruzione della curva modulare di livello uno, definiamo il quoziente [15] X0(N ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – PETER GUSTAV, LEJEUNE DIRICHLET – DOMINI A FATTORIZZAZIONE UNICA – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] parallela a quella dei processi stocastici. Teoria geometrica della misura Lo studio delle curve e delle superfici negli spazi euclidei ha una storia molto lunga. Esso è il fine principale della geometria differenziale ed è in gran parte motivato da ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] proprietà globali delle curve soluzione di equazioni differenziali su superfici non sono necessariamente complessi finiti. Il teorema di dualità di Alexander per un complesso geometrico X di Sn afferma che: Lo spazio Sn−X è il complementare di ... Leggi Tutto
CATEGORIA: GEOMETRIA

matematica

Enciclopedia della Matematica (2013)

matematica matematica termine che deriva dal greco mathematiché (sottinteso téchne, dove máthema significa conoscenza, sapere) e dal corrispondente sostantivo neutro plurale latino mathematica (le cose [...] posto alla base di tutto il calcolo differenziale e integrale, questo processo giunge a delle curve e delle superfici algebriche, operato soprattutto in Italia da quella che sarà chiamata la scuola italiana di geometria algebrica (→ geometria ... Leggi Tutto
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – SISTEMA DI NUMERAZIONE POSIZIONALE – FUNZIONI DI VARIABILE REALE – METODO IPOTETICO-DEDUTTIVO

L'Età dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo Ivor Grattan-Guinness Matematica pura e applicata nel XVIII secolo Nel presente volume la determinazione cronologica 'Settecento' [...] δ' denotava la variazione (potenziale) di 'ogni' punto su una curva, la cui poligonale spaziale era colta dalla 'd' di Leibniz. più utile, fu la geometria differenziale, in cui pure Monge eccelse. L'arte dell'approssimazione In tutte le teorie ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 9 ... 22
Vocabolario
differenziale
differenziale agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...
trïèdro
triedro trïèdro agg. e s. m. [comp. di tri- e -edro]. – 1. Nella geometria elementare, la parte (illimitata) di spazio racchiusa dai tre angoli piani individuati da tre semirette (spigoli), non complanari, uscenti da un medesimo punto (vertice);...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali