Insieme delle scienze che studiano in modo ipotetico-deduttivo entità astratte come i numeri e le misure: la m. pura studia i problemi matematici indipendentemente dalla loro utilizzazione pratica; alla [...] curve e le superfici, diede solido fondamento alla statica, unì il rigore logico e l’interesse teorico del matematico puro allo spirito applicativo dell come la geometria algebrica, la topologia differenziale e la teoria della probabilità trovano ...
Leggi Tutto
Ennio Peres
GIOCHI MATEMATICI
Con il termine matematica ricreativa si intende quel vasto insieme di questioni logico-matematiche che vengono affrontate per spirito ludico e puro piacere personale e non per la necessità di approfondire degli argomenti di studio o di risolvere casi concreti. Il materiale ... ...
Leggi Tutto
cinema e matematica Il matrimonio tra cinema e scienza è di quelli di lunga durata. Risale addirittura alla preistoria della settima arte, alle sperimentazioni fotografiche di P.J. Janssen, É.-J. Marey, E.J. Muybridge e alla tecnica pionieristica della cronofotografia, una sorta di antenata del cinema ... ...
Leggi Tutto
Laura Ziani
Settore della matematica che studia il comportamento dei sistemi dinamici (➔ anche statica). In essi l’evoluzione temporale è descritta da equazioni funzionali, la cui incognita è una funzione y(t), nelle quali il tempo gioca il ruolo della variabile indipendente (➔ indipendente, variabile). ... ...
Leggi Tutto
L’enorme sviluppo del sapere in campo matematico dall’antichità sino ai nostri giorni non consente più di accettare, per tale disciplina, la definizione di «scienza razionale dei numeri e delle misure», né di accogliere l’identificazione medioevale con le discipline del quadrivio (aritmetica; musica; ... ...
Leggi Tutto
Michiel Bertsch
Nei Paesi industrializzati (Cina e India comprese) la m. è generalmente considerata una delle scienze trainanti, ossia di importanza strategica per le società a forte base tecnologica. C'è da chiedersi allora perché in molti Paesi occidentali la m. soffre di un grave problema di immagine. ... ...
Leggi Tutto
Claudio Procesi
Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che a volte ci illuminano su quali possano essere gli sviluppi futuri di questa disciplina, nonostante proprio tale sguardo retrospettivo ... ...
Leggi Tutto
Walter Maraschini
Il regno dei numeri e delle figure, del calcolo e del ragionamento
La matematica è un sistema simbolico razionale e astratto che permette di orientarsi tra i problemi e di risolverli. Nata da esigenze concrete – contare, distribuire, scambiare merci – la matematica studia oggi numeri, ... ...
Leggi Tutto
Matematica
CCarla Frova
Tra le scienze oggetto dell'interesse di Federico II e coltivate presso la sua corte, la matematica occupa certamente uno spazio meno ampio di quello che ebbe la filosofia naturale. Costituisce tuttavia una componente non secondaria della cultura federiciana, in primo luogo ... ...
Leggi Tutto
Ana Millán Gasca
(XXII, p. 257; App. II, ii, p. 276; III, ii, p. 44; IV, ii, p. 414)
Nella voce matematica pubblicata nel vol. XXII della Enciclopedia Italiana, l'etimologia greca della parola introduce una stringata visione della storia della m. fino al 19° secolo, strettamente collegata a una riflessione ... ...
Leggi Tutto
matemàtica [Der. del lat. mathematica (ars), dal gr. mathematiké (téchne) "(arte) dei numeri"] [ALG] [ANM] Nata originar. come scienza dei numeri (aritmetica) e delle misure agrarie e poi delle misure di figure in genere (geometria), la m. si è sviluppata, dal Cinquecento, tramite l'uso della notazione ... ...
Leggi Tutto
(XXII, p. 547; App. II, 11, p. 276; III, 11, p. 44)
Francesco Giacomo Tricomi
Non è intento di quest'articolo di riferire analiticamente sui progressi realizzati nei vari rami della m. nell'ultimo quindicennio (per i quali si rinvia senz'altro alle voci dei singoli rami della m. in questa App.), bensì ... ...
Leggi Tutto
(XXII, p. 547 e App., II, 11, p. 276)
Francesco G. TRICOMI
Gli sviluppi più recenti della m. saranno qui presi in esame soprattutto nelle loro linee generali e nei loro mutui rapporti; per una più particolareggiata analisi dei progressi realizzati nei singoli rami più importanti rinviamo invece ad ... ...
Leggi Tutto
(XXII, p. 547)
Fabio Conforto
Valore ed essenza delle matematiche. - I più recenti studî sul valore e il significato delle matematiche tendono sempre più a vedere in questa disciplina null'altro che lo studio dei sistemi ipotetico-deduttivi di proposizioni, dei sistemi cioè costituiti dal complesso ... ...
Leggi Tutto
Federico Enriques
Matematica, o matematiche (gr. τὰ μαϑηματικά da μάϑημα "insegnamento") significa originariamente "disciplina" o "scienza razionale". Questo significato conferirono alla parola i filosofi della scuola italica, fondata da Pitagora (prima del 500 a. C.), che pose la scienza dei numeri ... ...
Leggi Tutto
VARIAZIONI, CALCOLO DELLE.
Leonida Tonelli
- È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] forma geometrica. Si consideri il fascio dellecurve estremali uscenti dal punto (a, pa) dell'estremale delle estremali
Queste due equazioni differenziali non sono fra loro indipendenti. Nell'ipotesi che le equazioni x = x (t), y = y (t) dellacurva ...
Leggi Tutto
(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131).
Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] esperto di geometriadifferenziale classica, J. Simons. Intanto, la diffusione della conoscenza dei w₂)= ℘ (x; w₁, w₂) per ogni w ∈ L. Perciò esiste una funzione razionale f sulla curva ellittica A tale che p o f=℘ (x; w₁, w₂), cioè ℘ (x; w₁, w₂) ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] delle singolarità degli autovettori definiti nei punti dellacurva spettrale. Tramite considerazioni di geometria risultati 'simplettici' venivano considerati come parte della dinamica differenziale o dellageometriadifferenziale. È merito di V. I. ...
Leggi Tutto
VETTORE
Roberto Marcolongo
Matematica. - Le grandezze, che si incontrano in geometria, in meccanica, in fisica, si possono distinguere in due classi. Le une - quali, ad es., le lunghezze, le aree, i [...] continui, nella fisica, nella geometriadifferenziale su di una superficie o negli spazi curvi, ecc.
1. Definizioni della normale principale, con n′ = t ≿ n quello della binormale, valgono (e sono fondamentali per lo studio differenzialedellacurva) ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali
Roshdi Rashed
Gli archimedei e i problemi infinitesimali
La storia dellageometria infinitesimale, [...] delle proprietà geometrichedellecurve. Egli unisce le nozioni di proiezione e di affinità ortogonale all'applicazione della teoria si trasformerà grazie all'intervento del calcolo differenziale e integrale.
Bibliografia
Becker 1936: Becker, Oskar ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] Il libro è ancora uno dei migliori testi sull'argomento.
Curve su superfici. Il matematico giapponese Kunihiko Kodaira formula l'analogo grande importanza poiché unifica due branche dellageometriadifferenziale, viene dimostrato con un procedimento ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1991-2000
1991-2000
1991
Il sistema operativo Linux. Uno studente finlandese, Linus Torvalds, sviluppa il sistema operativo Linux. Il sistema può essere distribuito, [...] , che generalizza la congettura di Mordell sui punti razionali dellecurve (dimostrata da Faltings nel 1983) e la congettura di propri dell'analisi classica e dellageometriadifferenziale.
Deep Blue batte Kasparov. Il computer Deep Blue della IBM ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti...
Enrico Giusti
Dalla Géométrie al calcolo: il problema delle tangenti e le origini del [...] i due problemi inversi: il calcolo delle tangenti e la soluzione delle equazioni differenziali. Quest'ultimo in particolare rappresenterà il problema principale, attorno al quale ruoteranno la geometriadellecurve e delle superfici, la meccanica, l ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] curva è chiamata ‛curva ellittica'. La teoria dellecurve ellittiche riunisce in modo affascinante geometria
Che il punto (p(z), p′(z)) sia sulla curva C è una immediata conseguenza dell'equazione differenziale per p(z); naturalmente p(z) e p′(z) ...
Leggi Tutto
differenziale
agg. e s. m. [der. di differenza]. – 1. agg. a. Delle differenze, che tien conto delle differenze, che stabilisce o intende stabilire una differenza: pretendere, ottenere, concedere un trattamento d.; pedagogia d., che distingue...
triedro
trïèdro agg. e s. m. [comp. di tri- e -edro]. – 1. Nella geometria elementare, la parte (illimitata) di spazio racchiusa dai tre angoli piani individuati da tre semirette (spigoli), non complanari, uscenti da un medesimo punto (vertice);...