• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
32 risultati
Tutti i risultati [380]
Algebra [32]
Matematica [130]
Biografie [62]
Fisica [59]
Storia della matematica [47]
Temi generali [31]
Filosofia [34]
Fisica matematica [31]
Astronomia [27]
Geometria [25]

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] sec., quando fu meglio conosciuto, si basava sull'affermazione dell'esistenza di diverse geometrie (proiettiva, affine, euclidea e anche non euclidea), ognuna caratterizzata da un gruppo di trasformazioni: le proprietà invarianti rispetto al gruppo ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] dei numeri e con diversi altri settori della matematica (come la teoria algebrica degli invarianti e la geometria, in particolare la geometria non euclidea) e con la fisica, anche se i legami con quest'ultima si accentueranno soprattutto nel XX ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Algebra, geometria, indivisibili

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Algebra, geometria, indivisibili Enrico Giusti Primi progressi nell’algebra Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] corrispondente. Nella loro formalizzazione, Cavalieri si rivolge naturalmente alla teoria delle proporzioni euclidea, che sola poteva fornire un linguaggio ‘geometrico’, cioè rigoroso, nel quale inserire le nuove classi di grandezze. Il secondo ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA
TAGS: EQUAZIONE DI SECONDO GRADO – PARALLELEPIPEDO RETTANGOLO – METODO DEGLI INDIVISIBILI – EQUAZIONE DI QUARTO GRADO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Algebra, geometria, indivisibili (2)
Mostra Tutti

varieta

Dizionario delle Scienze Fisiche (1996)

varieta varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] proprietà differenziali analoghe a quelle dello spazio euclideo Rn, che permettono l'introduzione e lo sviluppo di un calcolo differenziale simile a quello comune nello studio della geometria differenziale delle superfici: v. varietà differenziabili ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su varieta (6)
Mostra Tutti

continuita

Dizionario delle Scienze Fisiche (1996)

continuita continuità [Der. di continuo "l'essere continuo", nei vari signif. di questo termine] [LSF] Sulla base delle teorie quantistiche, per le quali i corpi sono sostanzialmente discontinui, la [...] da (x,y), tale che ogni punto del piano, la cui distanza euclidea da (x,y) è minore di ε, appartenga all'insieme; (b teoria degli insiemi (e in partic. nelle sue applicazioni alla geometria e alla teoria dei numeri), postulato fondato su due proprietà ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA TECNICA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su continuita (2)
Mostra Tutti

Euclide

Dizionario delle Scienze Fisiche (1996)

Euclide Euclide [STF] [ALG] Matematico greco, vissuto ad Alessandria d'Egitto intorno al 300 a.C., che sistemò, in maniera insuperata, la matematica che s'era andata sviluppando in circa due secoli di [...] 'esistenza di ciascuna di esse, svoltasi sul finire del 19° sec., ha dato luogo alla nascita della geometria non euclidea: → non euclideo. ◆ [ALG] Teoremi di E. sui triangoli rettangoli: mettono in relazione vari elementi del triangolo rettangolo: (a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – OTTICA – STORIA DELLA FISICA – ALGEBRA
TAGS: ALESSANDRIA D'EGITTO – MATEMATICA – ARITMETICA – PITAGORA – POLIEDRI
Mostra altri risultati Nascondi altri risultati su Euclide (6)
Mostra Tutti

topologia

Dizionario delle Scienze Fisiche (1996)

topologia topologìa [Comp. di topo- e -logia] [LSF] Per estensione del signif. nell'algebra (v. oltre), il termine indica anche la forma intrinseca di una struttura, cioè la forma che attiene alle proprietà [...] suoi nodi e dei suoi rami. ◆ [ALG] Settore della geometria, nato verso la metà del sec. 19° e attualmente in forte): v. algebre di operatori: I 97 c e Tab. 4.1. ◆ [ALG] T. euclidea: v. spazio topologico: V 468 a. ◆ [ALG] T. indotta e t. prodotto: v. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA
Mostra altri risultati Nascondi altri risultati su topologia (6)
Mostra Tutti

Beltrami Eugenio

Dizionario delle Scienze Fisiche (1996)

Beltrami Eugenio Beltrami Eugenio [STF] (Cremona 1835 - Roma 1900) Prof. di matematica in varie università e infine di fisica matematica e meccanica superiore a Pavia (1876) e a Roma (1892). ◆ [MCF] [...] si tratta di una superficie partic. adatta a studiare su un modello concreto, sia pure non nella sua integrità, la geometria non euclidea iperbolica. ◆ [ALG] Teorema di B.-Enneper: in un punto di una superficie, il quadrato della torsione di ciascuna ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA DEI FLUIDI – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: FISICA MATEMATICA – PSEUDOSFERA – TRATTRICE – ASINTOTO – ROMA
Mostra altri risultati Nascondi altri risultati su Beltrami Eugenio (4)
Mostra Tutti

iperbolico

Dizionario delle Scienze Fisiche (1996)

iperbolico iperbòlico [agg. (pl.m. -ci) Der. di iperbole] [ALG] Cilindro i.(propr., cilindro a sezioni i.): cilindro quadrico tale che tutte le sue sezioni piane siano iperboli (v. fig). ◆ [ANM] Coseno [...] derivate di alcune funzioni i., e nella tab. 4 alcuni integrali di espressioni contenenti tali funzioni. ◆ [ALG] Geometria i.: una delle due geometrie non euclidee, ideata da N.J. Lobacevskij e J.Bolyai, nella quale da un "punto" esterno a una "retta ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA

riemanniano

Dizionario delle Scienze Fisiche (1996)

riemanniano riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] dall'eventuale immersione in un certo spazio ambiente, e in questo senso si parla anche di geometria metrica intrinseca. Lo spazio euclideo a r dimensioni rientra come caso particolarissimo tra le varietà riemanniane. Viceversa, una varietà r. è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA
1 2 3 4
Vocabolario
geometrìa
geometria geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
euclidèo
euclideo euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali