• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
345 risultati
Tutti i risultati [345]
Matematica [123]
Biografie [57]
Fisica [54]
Storia della matematica [47]
Filosofia [33]
Temi generali [29]
Astronomia [27]
Fisica matematica [27]
Geometria [25]
Algebra [28]

ellittico

Dizionario delle Scienze Fisiche (1996)

ellittico ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] . galassie: II 808 c. ◆ [ALG] Geometria e.: geometria non euclidea, introdotta da B. Riemann e perciò detta anche geometria riemanniana, che si differenzia dalla geometria euclidea perché, contraddicendo il postulato euclideo delle parallele, in essa ... Leggi Tutto
CATEGORIA: ACUSTICA – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA MATEMATICA – OTTICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

CASSANI, Pietro

Dizionario Biografico degli Italiani (1978)

CASSANI, Pietro Piero Delsedime Nacque a Venezia il 4 giugno 1832 da Lorenzo e Maddalena Cippico. Dopo aver frequentato il ginnasio di S. Giovanni Laterano, frequentò i corsi universitari a Padova, [...] . Beltrarni, la cui pubblicazione Saggio di interpretazione della geometria non-euclidea (Napoli 1868), in cui si dimostrava che tutti i concetti e teoremi della geometria non euclidea di Lobaćevskij sono realizzati su superfici di curvatura costante ... Leggi Tutto
CATEGORIA: BIOGRAFIE

reductio ad absurdum

Enciclopedia della Matematica (2013)

reductio ad absurdum reductio ad absurdum (lat., «riduzione all’assurdo») tecnica dimostrativa, detta anche dimostrazione per assurdo, usata spesso in matematica; essa consiste nel dimostrare la validità [...] che esistono infiniti numeri primi e in seguito anche da G. Saccheri nei suoi studi sul quinto postulato di Euclide (→ geometria non euclidea). Con il metodo di riduzione all’assurdo si dimostra inoltre che √(2) è un numero irrazionale e che l ... Leggi Tutto
TAGS: PRINCIPIO DEL → TERZO ESCLUSO – QUINTO POSTULATO DI EUCLIDE – STORIA DELLA MATEMATICA – RIDUZIONE ALL’ASSURDO – LOGICA INTUIZIONISTA
Mostra altri risultati Nascondi altri risultati su reductio ad absurdum (2)
Mostra Tutti

spazio

Enciclopedia della Matematica (2013)

spazio spazio termine che, nella sua accezione originaria, indica l’ambiente della → geometria euclidea, così come scaturisce dall’esigenza di astrazione delle proprietà di estensione, forma e reciproca [...] proprietà dello spazio fisico, ma spesso esse sono invece abbastanza lontane dalla comune intuizione (si veda → geometria non euclidea). Spesso poi accade che in un dato insieme siano simultaneamente presenti diverse strutture di spazio, generalmente ... Leggi Tutto
TAGS: CORRISPONDENZA BIUNIVOCA – LINEARMENTE INDIPENDENTI – GEOMETRIA NON EUCLIDEA – GEOMETRIA EUCLIDEA – MODELLO MATEMATICO

parallela, assioma della

Enciclopedia della Matematica (2013)

parallela, assioma della parallela, assioma della assioma della geometria euclidea del piano che, nella sua formulazione corrente, afferma che per ogni retta r e per ogni punto P del piano esiste una [...] . Oltre alle geometrie in cui è ammesso tale assioma, esistono così anche geometrie in cui tale assioma è negato o nel senso che non esistono parallele o nel senso che per un punto P esistono più parallele a una retta data (→ geometria non euclidea). ... Leggi Tutto
TAGS: GEOMETRIA NON EUCLIDEA – GEOMETRIA EUCLIDEA – MATEMATICI – EUCLIDE

Minkowski

Enciclopedia della Matematica (2013)

Minkowski Minkowski Hermann (Aleksótas, oggi Kaunas, 1864 - Göttingen, Bassa Sassonia, 1909) matematico e fisico tedesco di origine lituana. Dopo gli studi universitari a Berlino e a Königsberg, dal [...] verso una concezione geometrica della teoria dei numeri (Geometrie der Zahlen, Geometria dei numeri, 1896), nella quale introdusse una sua geometria che si discosta da quella euclidea ma anche dalla geometria non-euclidea di Lobačevskij e ... Leggi Tutto
TAGS: TRASFORMAZIONI DI → LORENTZ – SPAZIO QUADRIMENSIONALE – GEOMETRIA NON-EUCLIDEA – COORDINATE CARTESIANE – RELATIVITÀ RISTRETTA

‘Omar Khayy?m

Enciclopedia della Matematica (2013)

¿Omar Khayy?m ‘Omar Khayyām (Nīshāpur, Khorasan, 1048 - 1131) matematico e poeta persiano. Studioso di musica, meccanica, mineralogia e geografia, fu anche teologo e filosofo, nonché astronomo alla corte [...] i tentativi di molti matematici greci e persiani di darne una dimostrazione; in tal modo, il suo lavoro può essere visto come un primo tentativo di una costruzione deduttiva geometrica che prescinda dal quinto postulato (→ geometria non euclidea). ... Leggi Tutto
TAGS: OMAR KHAYYĀM – SELGIUCHIDI – MINERALOGIA – ASTRONOMO – GEOMETRIA

extraitaliano

NEOLOGISMI (2018)

extraitaliano (extra italiano), s. m. e agg. Che va oltre l’ambito italiano. • Con evidenti richiami all’ultimo [Franco] Fortini (quello di «Composita solvantur») e un’innegabile parentela non con la [...] di [Andrea] Zanzotto (quello della trilogia, si intende), questo libro compatto, appartenente a una geometria non euclidea, rimanda a tradizioni extraitaliane e non soltanto poetiche, da Stevens a Celan, da certo Eliot a Kafka. (Giuseppe Genna, Unità ... Leggi Tutto
TAGS: GEOMETRIA NON EUCLIDEA – SERGIO MARCHIONNE – STAMPA SERA – KAZAKISTAN

riemanniano

Enciclopedia della Matematica (2013)

riemanniano riemanniano aggettivo utilizzato per indicare alcuni degli elementi matematici che fanno riferimento all’ampia produzione scientifica di B. Riemann. In particolare è utilizzato per indicare [...] in esse definita (→ Riemann, metrica di), il corrispondente tensore (→ Riemann, tensore di), la geometria riemanniana (→ geometria non euclidea; → geometria ellittica) di cui la sfera riemanniana costituisce un modello. Altri elementi che fanno ... Leggi Tutto
TAGS: GEOMETRIA RIEMANNIANA – VARIETÀ RIEMANNIANE – MATEMATICI – TENSORE – SPAZIO

pangeometria

Dizionario delle Scienze Fisiche (1996)

pangeometria pangeometrìa [Comp. di pan- e geometria] [STF] [ALG] Nome che N.I. LobacŠevskij dette alla geometria non euclidea iperbolica da lui ideata, in quanto, come egli stesso dimostrò, l'ordinaria [...] geometria euclidea è un caso limite di tale geometria, che pertanto ai suoi occhi si presentava come una "geometria onnicomprensiva"; oggi, a seguito dell'introduzione anche della geometria non euclidea parabolica, la denomin. non appare più corretta ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
1 2 3 4 5 6 7 8 9 ... 35
Vocabolario
geometrìa
geometria geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
euclidèo
euclideo euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali