• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
57 risultati
Tutti i risultati [95]
Matematica [57]
Algebra [26]
Fisica [17]
Geometria [17]
Analisi matematica [12]
Fisica matematica [11]
Biologia [10]
Meccanica quantistica [6]
Zoologia [5]
Storia della matematica [5]

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] il coefficiente da C a vari fasci. Un fascio S su M assegna, per definizione, a ciascun sottoinsieme aperto U di M un gruppo abeliano o, più in generale, un modulo S(U) in modo tale che, se V è un insieme aperto più piccolo, allora esiste una ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] di uno pneumatico) che ammette una struttura di gruppo abeliano. In particolare, i suoi punti interi (incluso l'infinito) formano un gruppo abeliano finitamente generato del tipo ℤr⊕F, con F gruppo finito, ma nonostante l'apparente semplicità del ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] Pontrjagin riformula i teoremi di dualità della topologia presentandoli come un caso particolare della dualità tra un gruppo abeliano discreto e il suo gruppo dei caratteri. Con ciò si unificava la teoria omologica della dualità e si apriva la strada ... Leggi Tutto
CATEGORIA: GEOMETRIA

quaternione

Dizionario delle Scienze Fisiche (1996)

quaternione quaternióne [Der. del lat. quaternio -onis, da quaterni (→ quaterna)] [ALG] Numeri che rappresentano una generalizzazione dei numeri complessi; il generico q di essi si rappresenta come q=a+bi+cj+dk, [...] dei q.: gruppo non commutativo, di 8 elementi, costituito dalle quattro unità dei q. e dalle loro opposte; è un gruppo hamiltoniano e anzi si dimostra che ogni gruppo hamiltoniano è prodotto diretto del gruppo dei q. per un opportuno gruppo abeliano. ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su quaternione (3)
Mostra Tutti

traslazione

Dizionario delle Scienze Fisiche (1996)

traslazione traslazióne [Der. del lat. translatio -onis "atto ed effetto dell'operare una traslazione", da transferre (→ traslatore)] [ALG] Trasformazione di coordinate spaziali del tipo x'=x+a, con [...] , partecipa anche la Terra. ◆ [ELT] T. vincolata: v. forme, riconoscimento delle: II 682 d. ◆ [ALG] Gruppo delle t.: l'insieme di tutte le t. nel piano o nello spazio; si tratta di un gruppo abeliano in quanto la somma di due t. è commutativa. ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su traslazione (2)
Mostra Tutti

OPERATORI

Enciclopedia Italiana - III Appendice (1961)

OPERATORI Fernando BERTOLINI . 1. Generalità. - Il termine o. indica d'ordinario il simbolo d'una operazione, o più in generale d'una applicazione univoca (v. applicazione, in questa App.); per una [...] che, per ogni x ε A, si ha f(x) ≤ g(x). Poiché B è un reticolo rispetto alla relazione ≤, ed è un gruppo abeliano rispetto alla operazione +, altrettanto accade per Φ. È chiaro che, se Φ è un insieme di operatori unarî definiti in un insieme A di ... Leggi Tutto

QUILLEN, Daniel

Enciclopedia Italiana - V Appendice (1994)

QUILLEN, Daniel Carlo Cattani Matematico statunitense, nato a Orange (New Jersey) il 27 giugno 1940. Conseguito il Ph.D. in matematica alla Harvard University (1969), è stato professore di Matematica [...] agli spazi topologici compatti, in modo tale da far corrispondere a uno spazio topologico X e a un intero n un certo gruppo abeliano Kn(X). Formalizzata così la K-teoria topologica, H. Bass provò (1963) che alcuni oggetti, simili a K0 e a K1, si ... Leggi Tutto
TAGS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY – TEORIA DELLE CATEGORIE – UNIVERSITÀ DI OXFORD – GEOMETRIA ALGEBRICA – HARVARD UNIVERSITY
Mostra altri risultati Nascondi altri risultati su QUILLEN, Daniel (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] che le curve di una superficie, modulo l'omologia topologica (o, equivalentemente, l'equivalenza algebrica), formano un gruppo abeliano finitamente generato. Dal citato lavoro del 1903 prende origine l'interesse di Severi per lo studio delle famiglie ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

gruppi di coomologia dei fasci

Enciclopedia della Scienza e della Tecnica (2008)

gruppi di coomologia dei fasci Fabrizio Andreatta Sia X uno spazio topologico. Dato una fascio F di gruppi abeliani su X, sia H0(X,F) il gruppo abeliano delle sezioni globali di F su X. Il funtore che [...] , dovuta ad Alexander Grothendieck, la coomologia dei fasci ovvia a tale carenza fornendo per via astratta funtori che associano a F gruppi Hq(X,F), con q intero non negativo, soggetti alle seguenti due richieste. La prima richiesta è che, data una ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA

modulo

Dizionario delle Scienze Fisiche (1996)

modulo mòdulo [Der. del lat. modulus, dim. di modus "misura"] [LSF] Termine, accompagnato da opportune qualificazioni, per indicare grandezze caratteristiche di certi fenomeni o di certi congegni: m. [...] m. di dentatura di una ruota dentata, ecc. ◆ [ALG] Generalizzazione del concetto di spazio vettoriale su un campo: è un gruppo abeliano su un anello. ◆ [FTC] (a) Nelle costruzioni modulari, unità di base, che definisce forma e dimensioni delle unità ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA DEI FLUIDI – METROLOGIA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2 3 4 5 6
Vocabolario
abeliano
abeliano agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali