Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] x1, x2, ..., xn su un dato corpo k algebricamente chiuso (nel caso classico, il corpo dei numeri complessi). Una varietà V è l'insieme di tutti i punti che soddisfano una famiglia di equazioni algebriche. Una varietà è, in modo essenzialmente unico ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] la divisione euclidea e le proprietà fondamentali dell'analisi combinatoria. Seguono considerazioni precise sugli insiemi infiniti, gli insieminumerabili e calcoli con cardinali infiniti; infine si studiano i limiti proiettivi e induttivi.
Il ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] e dunque non vi è incluso. La terminologia tecnica esprime questa conclusione affermando che l’insieme dei numeri reali non è numerabile.
Questo semplice e ingegnoso ragionamento di diagonalizzazione fu ripreso in tante questioni (anche da Bertrand ...
Leggi Tutto
infinito
infinito [agg. e s.m. Der. del lat. infinitus, comp. di in- neg. e del part. pass. finitus di finire "limitare", da finis "confine"] [LSF] Oltre che nei signif. matematici (per i quali v. oltre), [...] al limite, cioè come numerosità o potenza di un insieme: rientrano in questo concetto l'i. numerabile (cioè la potenza dell'insieme dei numeri naturali), l'i. continuo (la potenza del-l'insieme dei numeri reali, dei punti di una retta, ecc.). ◆ [ANM ...
Leggi Tutto
Linguistica
In fonologia, articolazioni c. sono quelle in cui nella tenuta non vi è occlusione che arresti la corrente espiratoria (la quale, dunque, fluisce ininterrotta durante tutta l’articolazione [...] c. tutte le articolazioni non occlusive, per es., le fricative, le vocali ecc.
matematica C. dei numeri reali (o c. aritmetico) L’insieme costituito da tutte le possibili successioni decimali, limitate o illimitate. Potenza del c. È la potenza dell ...
Leggi Tutto
potenza
potènza [Der. del lat. potentia, dall'agg. potens -entis "potente", part. pres. di posse "potere"] [LSF] (a) Generic., capacità di produrre grandi effetti. (b) Specific., l'energia che viene [...] reali, indicata con i simb. א₁ ("aleph uno") e 2א0 ("due alla aleph zero"). ◆ [MCS] P. del numerabile: la p. dell'insieme dei numeri naturali, indicata tradizionalmente con il simb. א₀ ("aleph zero"). ◆ [ELT] [INF] P. di calcolo: per un calcolatore ...
Leggi Tutto
numeri algebrici
Luca Tomassini
Numeri complessi (in particolare reali) che siano radici di un polinomio f(x)=anxn+...+a1x+a0 con coefficienti razionali non tutti nulli. Se α è un numero algebrico, [...] retta reale ℝ. Ciononostante, Georg Cantor ha dimostrato nel 1872 che essi formano un insieme con cardinalità numerabile, un risultato che implica l’esistenza di numeri trascendenti (cioè che non sono radici di alcun polinomio a coefficienti interi ...
Leggi Tutto
sigma
sigma [Lat. sigma, gr. sígma] [LSF] La 18a lettera dell'alfabeto gr., corrispondente alla s lat.; la forma min. è σ, quella maiusc. Σ. ◆ [ALG] Σ è il simb. di una sommatoria o di una serie. ◆ [FSN] [...] a una σ-algebra. ◆ [ANM] Misura s.-finita (σ-finita): misura μ definita su uno spazio S, se S è un'unione numerabile di insiemi, ognuno dei quali è misurabile e ha una misura finita secondo μ. ◆ [FSN] Modello s.: v. simmetria, rottura spontanea di: V ...
Leggi Tutto
transfinito
transfinito [agg. Comp. di trans- e finito "che va al di là del finito"] [ALG] Aritmetica t.: le operazioni di addizione, moltiplicazione ed elevamento a potenza introdotte fra i numeri cardinali [...] che s'indica con א₀ (Alef-zero) ed è anche il numero cardinale degli insiemi dei numeri interi relativi e dei numeri razionali; il successivo è la potenza del continuo (potenza dell'insieme dei numeri reali), che s'indica con א₁ (Alef-uno) ed è anche ...
Leggi Tutto
Borel Felix-Edouard-Emile
Borel ⟨borèl⟩ Félix-Edouard-Émile [STF] (Saint-Affrique, Aveyron, 1871 - Parigi 1956) Prof. di matematica nell'univ. di Parigi (1909); socio straniero dei Lincei (1918). ◆ [ANM] [...] Campo di B.: dato uno spazio topologico e una famiglia M di insiemi in questo spazio, il più piccolo insieme di insiemi contenente M e chiuso rispetto alle operazioni di unione numerabile e di complemento. ◆ [ANM] Funzione e somma di B.: v. funzioni ...
Leggi Tutto
numerabile
numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...