Hausdorff, spazio di
Hausdorff, spazio di spazio topologico X che soddisfa il seguente assioma di separazione, detto assioma T2: presi comunque due punti distinti a e b di X, esistono due aperti disgiunti [...] sono spazi di Hausdorff. Esempi di spazi topologici non di Hausdorff sono gli spazi con almeno due punti dotati della topologia banale (gli unici aperti sono l’insieme vuoto e l’intero spazio) e gli spazi infiniti dotati della topologia cofinita (gli ...
Leggi Tutto
spazio separabile
Luca Tomassini
Un insieme A è detto di cardinalità numerabile se esso può essere posto in corrispondenza biunivoca con l’insieme dei numeri naturali positivi ℕ. Esempi di insiemi numerabili [...] cardinalità numerabile) convergente a x nella topologia assegnata. La chiusura dell’insieme ℕ visto come sottoinsieme di ℝ (dotato della topologia naturale generata dagli intervalli aperti) coincide con ℕ stesso: ℕ non è dunque ovunque denso in ℝ. Al ...
Leggi Tutto
numerabile
numerabile si dice di un insieme i cui elementi possono essere messi in corrispondenza biunivoca con l’insieme N dei numeri naturali e che dunque ha la sua stessa cardinalità. Tale cardinalità [...] insieme dei numeri naturali è infinito, tutti gli insiemi numerabili sono infiniti. È numerabile per esempio l’insieme contiene un membro della famiglia). Secondo assioma. La famiglia T degli aperti dello spazio ha un base numerabile (base per T è una ...
Leggi Tutto
Borel, misura di
Borel, misura di misura definita sulla σ-algebra di tutti gli insiemi di Borel di uno spazio topologico Ω, ossia la più piccola σ-algebra fra quelle che contengono tutti gli aperti di [...] è una funzione definita sopra una σ-algebra F di sottoinsiemi di un certo insieme X con valori nell’intervallo [0, +∞) tale da soddisfare le seguenti proprietà:
• l’insieme vuoto ha misura nulla;
• se E1, E2, E3, ... è una successione di elementi di ...
Leggi Tutto
anello, spettro di un
anello, spettro di un in un anello commutativo unitario A, è l’insieme dei suoi ideali primi, indicato con Spec(A). Tale insieme costituisce uno spazio topologico dotato della topologia [...] = V(IJ)
Una base della topologia di Zariski su Spec(A) è costituita dagli aperti della forma
dove ƒ è un arbitrario elemento di A e (ƒ) è l’ideale insieme degli ideali massimali di A: lo spettro massimale di un anello coincide con l’insieme ...
Leggi Tutto
Uryson Pavel Samuilovic
Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] X, dati due insiemi disgiunti A e B, si può sempre trovare una funzione f tale che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a ...
Leggi Tutto
topologia cofinita
topologia cofinita topologia su un insieme X i cui aperti sono i complementari degli insiemi finiti. Ne consegue che i chiusi sono tutti e soli i sottoinsiemi finiti, oltre a X stesso. [...] Se X è un insieme finito la topologia cofinita coincide con la topologia discreta. Se X è infinito, si ha uno spazio topologico non di Hausdorff (→ Hausdorff, spazio di): uno spazio con topologia cofinita è di Hausdorff se e solo se è finito. ...
Leggi Tutto
Borel, algebra di
Borel, algebra di o, più propriamente, σ-algebra di Borel, nel contesto dei numeri reali è la più piccola σ-algebra sui numeri reali che contiene tutti gli intervalli di numeri reali. [...] Più in generale, in uno spazio topologico è la più piccola σ-algebra che contiene tutti i suoi aperti (o, in modo equivalente, chiusi). Tali aperti sono gli insiemi di Borel. ...
Leggi Tutto
aperto
apèrto agg. [part. pass. di aprire; lat. apĕrtus, part. pass. di aperire]. – 1. a. Non chiuso: uscio a., finestra a.; il negozio rimane a. fino all’una; sulla scrivania c’era un libro a.; restare, rimanere a bocca a., per stupore; stare...
sorgente aperta
loc. s.le f. e agg.le In informatica,codice sorgente di un programma liberamente visualizzabile e modificabile dall’utente; a esso relativo. ◆ Nel 1984 l’informatico Richard Stallman del Mit lanciò la Free Software Foundation...