prodotto
prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] e in effetti varie funzioni di notevole importanza (per es., la funzione gamma di Eulero e la funzione zeta diRiemann) sono esprimibili come p. infinito: v. funzioni di variabile complessa: II 780 a. ◆ [ANM] P. integrale: di due funzioni in un certo ...
Leggi Tutto
ellittico
ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] dall'inversione di certi integrali e. e intervengono nella teoria delle equazioni differenziali alle derivate parziali. ◆ [ASF] Galassie e.: v. galassie: II 808 c. ◆ [ALG] Geometria e.: geometria non euclidea, introdotta da B. Riemann e perciò ...
Leggi Tutto
Jacobi Karl Gustav Jacob
Jacobi 〈iakóbi〉 Karl Gustav Jacob [STF] (Potsdam 1805 - Berlino 1851) Prof. di matematica nell'univ. di Königsberg (1827). ◆ [MCC] Condizione di J.: v. moto, costanti del: IV [...] .: v. Riemann, superfici di: V 6 c. ◆ [MCC] Identità di J.: identità che caratterizza i prodotti di Lie: v. gruppi classici, teoria dei: III 111 e. ◆ [MCC] Identità di J. tra campi vettoriali: v. meccanica analitica: III 659 b. ◆ [MCC] Integraledi J ...
Leggi Tutto
Liouville Joseph
Liouville 〈liuvìl〉 Joseph [STF] (Saint-Omer, Pas de Calais, 1809 - Parigi 1882) Prof. di matematica nell'École polytecnique (1831) e nel Collège de France (1851), poi di meccanica alla [...] gassoso, stato: II 839 c). ◆ [ANM] Equazione di L.-von Neumann: v. termalizzazione in meccanica quantistica: VI 140 d. ◆ [ANM] Integraledi L.-Riemann: v. trasformazione integrale: VI 297 b. ◆ [ANM] Proprietà di L.: v. potenziale, teoria del: IV 570 ...
Leggi Tutto
scaloide
scalòide [Der. di scala con il suff. -oide] [ALG] La figura formata da più prismi (o cilindri) sovrapposti, che s'introduce per approssimare solidi come la piramide (fig. 1) o il cono. ◆ [ANM] [...] sovrapposti, che ha rilevanza nella teoria dell'integrazione di funzioni, rispettiv., di una variabile oppure di due variabili; per es., si ricorda che l'integraledi una funzione y=f(x), integrabile secondo Riemann in un dato intervallo (a,b), è ...
Leggi Tutto
In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] f(x)dx che lo seguono, il significato dell’integrale. La nozione qui esposta di i. definito è sostanzialmente dovuta a P. Mengoli, A. Cauchy e B. Riemann; dell’i. di Mengoli-Cauchy-Riemann si conoscono varie generalizzazioni tra cui, particolarmente ...
Leggi Tutto
MATEMATICA
Federico Enriques
Matematica, o matematiche (gr. τὰ μαϑηματικά da μάϑημα "insegnamento") significa originariamente "disciplina" o "scienza razionale". Questo significato conferirono alla [...] rigoroso per il confronto di aree e volumi, che è il cosiddetto metodo di esaustione (v. integrale, calcolo).
4. Le A.-L. Cauchy, era passato poi in Germania nelle scuole di B. Riemann e di C. Weierstrass, e che la geometria, rinnovata da Francesi ai ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] E.H. Bruns dimostrarono la non esistenza diintegrali algebrici, distinti dagli integrali classici, per il problema dei tre corpi Paris 1992.
D.V. Anosov, A.A. Bolibruch, The Riemann-Hilbert problem, Wiesbaden 1994.
H. Hofer, E. Zehnder, Symplectic ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] calcolo differenziale e integrale, e non (mod p).
Il teorema fu dimostrato da Euler nel 1736 (e prima di lui da Leibniz in un manoscritto del 1680 ca.). Studiando i numeri primi dimostrata nel 1859 da Bernhard Riemann (1826-1866), che introdusse la ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] : v. algebrica descritta anche da coordinate grassmanniane. ◆ [MCC] V. integrale: v. meccanica analitica: III 653 e. ◆ [ALG] V. jacobiana: v. Riemann, superfici di: V 6 a. ◆ [ANM] V. lineare: è un sottoinsieme di uno spazio lineare V della forma x₀+L ...
Leggi Tutto