semigruppo In matematica, insieme in cui è definita un’operazione (o legge di composizione interna) binaria associativa per la quale valgano le due regole di semplificazione a sinistra e a destra, tale [...] regole di semplificazione a sinistra e a destra. Un esempio di s. è dato dall’insieme dei numeri interi positivi composti con l’ordinaria moltiplicazione.
La nozione di s. ha trovato crescenti applicazioni nella teoria delle equazioni differenziali ...
Leggi Tutto
successione
successióne [Der. del lat. successio -onis, dal part. pass. successus di succedere "venire dopo", comp. di sub "sotto" e cedere "andare"] [ANM] Insieme di elementi ai (numeri, punti, funzioni, [...] , e limitata se tutti i suoi elementi sono compresi entro due estremi. ◆ [ANM] S. bilatera: s. i cui indici sono numeri interi relativi; la sua convergenza si definisce come convergenza indipendente delle due s. {an} e {a-n} . ◆ [ANM] S. completa: v ...
Leggi Tutto
pi grèco [LSF] Nome corrente della lettera gr. π, Π (→ pi). ◆ [ALG] [ANM] Nella forma min. π, numero che, introdotto inizialmente come rapporto tra la lunghezza di una qualunque circonferenza e il suo [...] reale irrazionale (cioè decimale illimitato non perio-dico) e trascendente (cioè non radice di alcuna equazione algebrica a coefficienti interi); le sue prime 10 cifre sono 3.141 592 653. ◆ [ALG] Nella forma maiusc., Π, con appropriati indici, è ...
Leggi Tutto
dominio a fattorizzazione unica
Luca Tomassini
Sia S un dominio d’integrità con unità, ovvero un anello commutativo con unità tale che se a≠0 e b≠0 (con a,b∈S) allora ab≠0 . Due elementi c,d di S si [...] a si dice irriducibile (o primo) se a=bc implica che a o b o entrambi siano invertibili. Nel caso dei numeri interi relativi ℤ, per es., 1 e −1 sono gli unici elementi invertibili. Un elemento è, dunque, irriducibile se e soltanto se è divisibile ...
Leggi Tutto
naturale
naturale [agg. Der. del lat. naturalis, da natura] [LSF] (a) Che riguarda la Natura nel suo signif. di Universo delle cose (per es., mondo naturale). (b) Con signif., traslato, di ciò che deriva [...] ) di sistemi. ◆ [GFS] Coordinate n.: v. coordinate terrestri: I 762 e. ◆ [ANM] Logaritmi n.: i logaritmi neperiani, in base e=2.718...: → logaritmo. ◆ [ALG] Numeri n.: i n. interi non negativi. ◆ [ACS] Scala n.: v. acustica musicale: I 40 f. ...
Leggi Tutto
discretezza
discretézza [Der. di discreto] [ALG] Caratteristica di una struttura spaziale (o temporale) discreta, cioè tale che in essa il principio delle relazioni metriche è implicito nel concetto [...] intervalli del continuo reale non sussiste alcun attributo intrinseco di un intervallo di spazio e tempo). Intuitivamente, una struttura discreta è isomorfa a un sottoinsieme del prodotto cartesiano delldei numeri interi: v. spazio e tempo: V 448 c. ...
Leggi Tutto
vero
véro [agg. e s.m. Der. del lat. verus] [ALG] [FAF] Nella logica matematica, un enunciato o una formula di una teoria si dice v. (simb. V) in un universo (modello della teoria) se è soddisfatta sostituendo [...] uguale alla metà di a") è v. se interpretata nell'universo dei numeri razionali, non lo è nell'universo degli interi relativi; si tratta quindi di un concetto semantico, a differenza del concetto sintattico di dimostrabile: un enunciato (o teorema) è ...
Leggi Tutto
Filosofia
Il problema dell’indefinita d. del reale (o della materia) si presenta al pensiero speculativo dei Greci fin dall’età presocratica. Dalla sua asserzione (che tradizionalmente viene attribuita [...] e del suo calcolo.
Matematica
Proprietà di un numero d’essere divisibile per un altro. I criteri di d. dei numeri interi sono regole che permettono di riconoscere se un numero è divisibile per un altro senza eseguire effettivamente la divisione. Le ...
Leggi Tutto
trascendente
trascendènte [agg. Der. del part. pres. trascendens -entis del lat. trascendere "oltrepassare", comp. di trans- "oltre" e scandere "salire"] [ANM] Di qualsiasi ente che non sia algebrico. [...] trigonometriche (dirette e inverse). ◆ [ALG] Numero t.: numero reale che non sia radice di nessuna equazione algebrica a coefficienti interi. I numeri t. formano un insieme che ha la stessa potenza di quella dei numeri reali (potenza del continuo ...
Leggi Tutto
Matematico greco vissuto in Alessandria verso il 250 d. C. Ci rimangono di lui, oltre a un libro sui Numeri poligonali, i primi sei libri di Aritmetica (gli altri sette sono andati perduti). D. è da considerarsi [...] D.: per es. il termine potenza. La maggior parte dei problemi di D. sono di analisi indeterminata: egli infatti cercava le soluzioni intere (o razionali) delle equazioni. È rimasto il nome di equazioni diofantee alle equazioni lineari, a coefficienti ...
Leggi Tutto
inter-
ìnter- [dal lat. inter «tra», inter-]. – Prefisso di parole composte, derivate dal latino (specialmente verbi) o formate modernamente (soprattutto sostantivi e aggettivi), nelle quali ha in genere i significati della prep. tra, indicando...
interarmi
(o interarme) agg. [comp. di inter- e arma]. – Che interessa o riguarda due o più armi dell’esercito: disposizioni, circolari interarmi. Cfr. interforze e pluriarma.