• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
26 risultati
Tutti i risultati [322]
Matematica [26]
Archeologia [39]
Temi generali [30]
Arti visive [28]
Diritto [23]
Architettura e urbanistica [21]
Fisica [20]
Medicina [18]
Asia [14]
Biologia [14]

complessità

Enciclopedia on line

complessità Caratteristica di un sistema (perciò detto complesso), concepito come un aggregato organico e strutturato di parti tra loro interagenti, in base alla quale il comportamento globale del sistema [...] o meno di prevedere l’evoluzione temporale su intervalli più o meno lunghi, partendo da dati inevitabilmente se P ∕= NP oppure no, è uno dei maggiori problemi aperti nel settore algoritmico. La congettura che viene comunemente accettata è che ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – TEMI GENERALI – FISICA MATEMATICA – LOGICA MATEMATICA
TAGS: SENSIBILITÀ ALLE CONDIZIONI INIZIALI – EQUILIBRIO TERMODINAMICO – STRATIFICAZIONE SOCIALE – TEORIA DELLE CATASTROFI – FUNZIONE ESPONENZIALE
Mostra altri risultati Nascondi altri risultati su complessità (2)
Mostra Tutti

STATISTICA

Enciclopedia Italiana - V Appendice (1995)

STATISTICA Pietro Muliere Ester Capuzzo (XXXII, p. 506; App. I, p. 1018; IV, III, p. 447) ''Statistica'' è un termine con un significato amplissimo sia per la varietà delle applicazioni sia per le [...] (θ); 2) θ1(T)≤θ≤θ2(T). Allora (θ1(T), θ2(T)) è un intervallo di confidenza per θ a livello 1−α1−α2. L'affermazione che la probabilità che θ1(T siano istituiti uffici di collegamento del SISTAN aperti al pubblico. Statistica giudiziaria. - Per ... Leggi Tutto
TAGS: CAMERE DI COMMERCIO, INDUSTRIA, ARTIGIANATO E AGRICOLTURA – ISTITUTO NAZIONALE PER LA PREVIDENZA SOCIALE – ISTITUTO POLIGRAFICO E ZECCA DELLO STATO – ENTE NAZIONALE PER L'ENERGIA ELETTRICA – COMITATO OLIMPICO NAZIONALE ITALIANO
Mostra altri risultati Nascondi altri risultati su STATISTICA (15)
Mostra Tutti

COMPLESSITA'

Enciclopedia Italiana - VI Appendice (2000)

Il termine complessità è oggi frequentemente usato, in campo scientifico, in contesti diversi. In quello dell'informatica, dell'analisi numerica e dell'ottimizzazione, corrisponde alla caratteristica quantitativa [...] t₀, anche in un istante t₁ che disti da t₀ di un intervallo molto breve. Nel diagramma di fig. 1, il punto a, caratterizzato da punti di forma iniziale quadrata (precisamente un quadrato aperto, privo del suo perimetro): lo stretching deforma il ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: SENSIBILITÀ ALLE CONDIZIONI INIZIALI – TEORIA SINTETICA DELL'EVOLUZIONE – MEZZI DI COMUNICAZIONE DI MASSA – CORRISPONDENZA BIUNIVOCA – EQUAZIONE DIFFERENZIALE

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] delle componenti della funzione F sulle facce del bordo ∙Δ dell'intervallo Δ. Si ha la seguente identità dove ν(x) è il e. del primo ordine, la cui forma generale è [1] dove Ω è un aperto di RN, u è una funzione definita su Ω, ∇u il gradiente di u ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

Probabilita

Enciclopedia del Novecento (1980)

Probabilità Gian-Carlo Rota e Joseph P.S. Kung *La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi. sommario: 1. Introduzione. [...] misura normalizzata di Lebesgue di E. Borel fu il primo a usare l'isomorfismo tra l'intervallo [0,1] e lo spazio campione di Bernoulli con p = q = 1/2 semplici relativi a queste configurazioni sono ancora aperti. Per esempio, qual è la distribuzione ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – MATRICE DELLE PROBABILITÀ DI TRANSIZIONE – EQUAZIONE ALLE DERIVATE PARZIALI – LEGGE DEBOLE DEI GRANDI NUMERI – TEORIA QUANTISTICA DEI CAMPI
Mostra altri risultati Nascondi altri risultati su Probabilita (12)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] = 0, e con il vincolo u′ (r) ≤ 0 per ogni r dell'intervallo [0, R]. Vale la pena osservare che, eliminando il vincolo dell'altezza massima assegnata, S. Bernstein (1915) rimase per lungo tempo aperto il problema di stabilire se un risultato analogo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] dominio a fattorizzazione unica. Ci sono molti problemi aperti concernenti il numero di classi e alcuni problemi di delle costanti assolute, c>0, k>0, uniformemente per u negli intervalli finiti. A una forma automorfa f(z) di segnatura {λ, k, γ ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] anni) si mise a tabulare il numero di primi nei vari intervalli di lunghezza mille. Alla fine, i suoi calcoli si estesero è un dominio a fattorizzazione unica. Ci sono molti problemi aperti concernenti il numero di classi e altri di questo tipo sono ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] . Il seguito tratta la definizione dell'integrale in un intervallo non compatto. Si mostra l'utilità della nozione di I+ rispetto alla misura positiva μ è definito da Se G è un aperto di E e φG è la funzione caratteristica associata, si pone μ*(G)= ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] dell'equazione: [6] (I-C)u=p, u∈G dove G è un aperto limitato in uno spazio di Banach X. Il grado è definito soltanto se non vi sono 11]. L'esistenza e unicità locale (cioè per piccoli intervalli di tempo) di una soluzione classica per l'equazione ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3
Vocabolario
apèrto
aperto apèrto agg. [part. pass. di aprire; lat. apĕrtus, part. pass. di aperire]. – 1. a. Non chiuso: uscio a., finestra a.; il negozio rimane a. fino all’una; sulla scrivania c’era un libro a.; restare, rimanere a bocca a., per stupore; stare...
topològico
topologico topològico agg. [der. di topologia] (pl. m. -ci). – Relativo alla topologia, nei suoi varî sign. In partic.: 1. In geografia, codice t., l’insieme dei segni di cui si serve la topologia per rappresentare i varî tipi di forme del...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali