Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] a cui abbiamo accennato, porta in modo naturale a considerare come uguali due insiemi dotati di strutture algebriche isomorfe (➔ isomorfismo). In ultima analisi il compito dell’a. sarà allora quello di classificare gli insiemi algebrici a meno d ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] anche rispetto all’estrazione di radice. Si dimostra anche che R, con le operazioni e relazioni di cui sopra, contiene un sottoinsieme isomorfo a Q e che la sua cardinalità è maggiore di quella di N; R è cioè «più che numerabile». La costruzione dei ...
Leggi Tutto
GEOMETRIA
Mario Rosati
(XVI, p. 623; App. III, I, p. 724; IV, II, p. 39)
Le ricerche nel campo delle discipline geometriche ricoprono, com'è ormai noto da tempo, un'area sempre più ampia e differenziata [...] tra due varietà essendo fornito dall'esistenza di una mappa birazionale tra esse, o − in forma equivalente − dall'isomorfismo su C dei loro campi di funzioni. Il problema centrale classico della g. algebrica resta sempre quello della classificazione ...
Leggi Tutto
GRUPPO (XVII, p. 1012; App. II, 1, p. 1096; III, 1, p. 795)
Guido Zappa
Negli ultimi decenni, la teoria dei g. ha compiuto progressi molto considerevoli. Ci limiteremo qui ai più significativi.
Gruppi [...] in U, si abbia ϕ(xy) = ϕ(x) ϕ(y). Due g. di Lie danno luogo alla stessa algebra di Lie se e solo se sono localmente isomorfi. Se G è un g. di Lie di dimensione n, indicati con X1, X2, . . ., Xn gli elementi di una base dell'algebra di Lie, si ha
I ...
Leggi Tutto
Sistemi dinamici
Giovanni Jona-Lasinio
Ya. G. Sinai
Origini e sviluppo, di Giovanni Jona-Lasinio
Risultati recenti, di Ya. G. Sinai
Origini e sviluppo di Giovanni Jona-Lasinio
SOMMARIO: 1. Introduzione. [...] agisce sullo spazio delle fasi M2 con misura invariante μ2. I sistemi dinamici {T1t} e {T2t} sono detti ‛metricamente isomorfi' se esiste un isomorfismo (mod 0) ϕ che trasforma un sottoinsieme invariante M′1 ⊂ M1 di misura pari alla misura di M1 in ...
Leggi Tutto
struttura d'ordine
struttura d’ordine un insieme non vuoto A, costituito da elementi di natura arbitraria, è dotato di una struttura d’ordine se su di esso è definita una relazione d’ordine ≤ (→ ordinamento). [...] dire tale che valga ƒ(a) ◁ ƒ(b) ogniqualvolta sia verificato a ≤ b, per due opportuni elementi a e b di X. Un isomorfismo d’ordine è un morfismo d’ordine che sia biunivoco. Con un leggero abuso di linguaggio, due insiemi ordinati sono detti avere la ...
Leggi Tutto
equivalenza categorica
Luca Tomassini
Una categoria C è composta da: (a) una classe ObC (non necessariamente un insieme, dunque) di oggetti, per esempio enti matematici (gruppi o loro rappresentazioni, [...] definisce allora equivalenza tra due categorie C e D un funtore F:C→D tale che esistano un funtore ‘inverso’ G:D→C e due isomorfismi naturali η1:F°G→idD e η2:G°F→idC. Il funtore G non è dunque inverso del funtore F nell’usuale accezione algebrica (la ...
Leggi Tutto
Fisica
Per il principio di corrispondenza di Bohr ➔ corrispondènza, princìpio di.
Matematica
Date due classi, o insiemi, A e A′, di oggetti o di enti astratti, si dice che fra di esse intercede una c. [...] ] sopra una retta, il numero dei punti uniti, cioè dei punti che coincidono con uno dei corrispondenti, è m + n». Tra le c. biunivoche ricordiamo le proiettività, gli isomorfismi tra due insiemi algebrici, e gli omeomorfismi tra due spazi topologici. ...
Leggi Tutto
Introduzione. - La teoria delle c. è di recente costruzione, ma, per la sua stessa natura, è oggi già penetrata diffusamente nella matematica. Essa rappresenta, nel pensiero matematico, un momento di sintesi, [...] stessi, si possono costruire c. di c., i cui oggetti sono c., e i cui morfismi sono funtori. Infine, un funtore. T: C → D è detto un "isomorfismo di c." se esiste un funtore S: D → C tale che S•T = IdC e T•S = IdD; T è detto un' "immersione", se T(f1 ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] chiuso). Il c. C̅ gode della notevole proprietà che un qualunque ampliamento algebrico di C è contenuto, a meno di isomorfismi, in C̅. Per quanto riguarda i secondi si dimostra che un ampliamento trascendente qualunque di C è un ampliamento algebrico ...
Leggi Tutto
isomorfico
iṡomòrfico agg. [der. di isomorfo] (pl. m. -ci). – 1. In botanica, nell’alternanza di generazione, detto delle due generazioni quando hanno aspetto e sviluppo eguale. 2. In matematica, relativo all’isomorfismo o a fenomeni di isomorfismo;...
isomorfismo
iṡomorfismo s. m. [comp. di iso- e -morfismo]. – 1. In cristallochimica, il fenomeno per cui due o più sostanze che hanno analoga formula chimica (e simili dimensioni relative di anioni e cationi) si presentano in cristalli aventi...