L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] errori di misura, a un sistema incompatibile, con più equazioni che incognite. Per trattare in modo ottimale un tale sistema Legendre (1805) e Carl Friedrich Gauss (1809) mettono a punto il 'metodo dei minimi quadrati'. Dato un sistema di k equazioni ...
Leggi Tutto
armonica
armònica [s.f. Der. dell’agg. armonico] ◆ [ANM] Ciascuno dei termini sinusoidali dell’analisi armonica di una funzione: prima a., o a. fondamentale, seconda a., terza a., ecc. (sottintendendo [...] , Yn(c)m(J, l)~Pnm(cosJ) cos(ml), Yn(s)m (J, l)~Pnm(cosJ) sin(ml), dove Pnm(u) sono le funzioni associate di Legendre (reali). All’aumentare di n (il grado) e di m (l’ordine) aumenta la complessità delle a. sferiche, che hanno n-m zeri lungo un mezzo ...
Leggi Tutto
In matematica si dice di un sistema di vettori che siano a due a due ortogonali e inoltre di lunghezza unitaria, o anche di un sistema di funzioni f1(x), … fn(x), …, in numero finito o infinito, tali che, [...] (n+1/2)1/2 Pn(x), per n = 0, 1, 2, … nell’intervallo (−1, 1), dove Pn(x) sono i polinomi di Legendre. L’importanza dei sistemi o. consiste, tra l’altro, nella possibilità, che essi offrono, di rappresentare e individuare un vettore (o una funzione ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] stessi valori agli estremi e con ∣v(x)−u(x)∣⟨δ in ogni punto di [a,b]. Le condizioni necessarie di Euler e di Legendre valgono anche per i minimi locali. Supponiamo che
per ogni (x,y,η). La 'condizione sufficiente di Jacobi' stabilisce che, se u è ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali ordinarie
Jeremy Gray
Equazioni differenziali ordinarie
Variabili reali
Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] dei periodi di un integrale ellittico considerato come funzione di un parametro, osservando che i periodi soddisfano l'equazione di Legendre (essa stessa un caso speciale della e.i.g). Egli quindi sviluppò la teoria delle serie di potenze in una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] x2+y2+z2+t2, con x,y,z,t interi.
Una forma più precisa del teorema dei quattro quadrati fu ottenuta da Adrien-Marie Legendre (1752-1833) che nel 1785 e nel 1798 trovò la condizione necessaria per la somma di tre quadrati: un intero positivo n è somma ...
Leggi Tutto
ellittico
ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] un integrale di tale specie fu introdotto inizialmente per esprimere la lunghezza di un arco di ellisse. A.-M. Legendre mostrò che essi sono classificabili nelle seguenti tre forme tipiche, dette, rispettiv., integrali e. di prima, seconda e terza ...
Leggi Tutto
Botanica
Si dice di un organo (per es., una foglia) quando il suo contorno ha quasi esattamente la forma di un ellisse, ha cioè i due estremi arrotondati; oppure, meno propriamente, quando i due estremi [...] e Q un polinomio generico di 3° o 4° grado nella variabile x. Integrali di tale forma si dicono perciò e.: A.-M. Legendre mostrò che essi sono riducibili a tre forme tipiche, rispettivamente integrali e. di prima, di seconda e di terza specie, che si ...
Leggi Tutto
Jacobi Karl Gustav Jacob
Jacobi 〈iakóbi〉 Karl Gustav Jacob [STF] (Potsdam 1805 - Berlino 1851) Prof. di matematica nell'univ. di Königsberg (1827). ◆ [MCC] Condizione di J.: v. moto, costanti del: IV [...] )](1-x)-α(1-x)-β (dn/dxn)[(1-x)α(1+x)β(1-x2)n]. Costituiscono una generalizzazione dei polinomi di Legendre e di Chebyscev (v. sviluppi in serie: VI 66 Tab. 7.1). Intervengono nella soluzione dell'equazione ipergeometrica. ◆ [MCC] Teorema di J. della ...
Leggi Tutto
Agraria
Legge del minimo
Legge che afferma che la quantità della produzione è regolata dall’elemento nutritivo contenuto nel terreno in proporzione minima rispetto agli altri. Corrisponde alla legge dei [...] da x1, x2, ..., xn, si vuol determinare un valore x0 il quale meglio approssimi (statisticamente) l’incognito x*. Secondo la teoria di Legendre-Gauss x0 è il valore più probabile di X ed è quello che rende minima la somma dei quadrati degli errori ...
Leggi Tutto
minimo
mìnimo agg. e s. m. (f. -a) [dal lat. minĭmus, superl. di minor «minore»; v. meno]. – Piccolissimo, il più piccolo. Funge da superlativo di piccolo (come il lat. minĭmus rispetto a parvus) e si contrappone direttamente a massimo. 1....
laissez faire, laissez passer
‹lesé fèer lesé pasé› (fr. «lasciate fare, lasciate passare»). – Massima, attribuita all’economista fr. J.-C.-M.-V. de Gournay (1712-1759), che nel sec. 18° costituì una sorta di slogan per i fisiocrati e i liberisti...