• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
15 risultati
Tutti i risultati [217]
Fisica matematica [15]
Matematica [61]
Fisica [46]
Chimica [15]
Temi generali [17]
Analisi matematica [16]
Biologia [15]
Algebra [14]
Ingegneria [11]
Storia della matematica [13]

Gram Jorgen Pedersen

Dizionario delle Scienze Fisiche (1996)

Gram Jorgen Pedersen Gram 〈gram〉 Jørgen Pedersen [STF] (Hadersleben 1850 - Copenaghen 1916) Cultore di matematiche. ◆ [ALG] Determinante di G.: per uno spazio vettoriale a n dimensioni in cui è definito [...] dipendenti (teorema di Gram). ◆ [ALG] Metodo di ortonormalizzazione di G.-Schmidt: partendo da un insieme di vettori linearmente indipendenti a₁, a₂, ..., an porta a un insieme ortonormale di vettori b₁, b₂, ..., bn; si pone b₁=a₁/|a₁| definendo ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA

Imparare a generalizzare

Frontiere della Vita (1999)

Imparare a generalizzare Manfred Opper (Neural Computing Research Group, Aston University Birmingham, Gran Bretagna) Questo saggio fornisce un'introduzione alle teorie che mirano alla comprensione della [...] sono capaci di realizzare solo un tipo molto limitato di regole di classificazione, le cosiddette regole linearmente separabili. Quindi, indipendentemente dal problema di trovare il migliore algoritmo per apprendere la regola, ci si può chiedere in ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – FISICA MATEMATICA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] critici di funzionali non lineari particolarmente interessanti dal punto di vista topologico. Recenti sviluppi in dinamica hamiltoniana Un sistema hamiltoniano con n gradi di libertà e di hamiltoniana H0 indipendente dal tempo è detto completamente ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

Fisica matematica

Enciclopedia della Scienza e della Tecnica (2007)

Fisica matematica Gianfausto Dell'Antonio La fisica matematica si può definire come la disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici. La ricerca [...] critici di funzionali non lineari particolarmente interessanti dal punto di vista topologico. Recenti sviluppi in dinamica hamiltoniana Un sistema hamiltoniano con n gradi di libertà e hamiltoniana H0 indipendente dal tempo è detto completamente ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – ELETTRODINAMICA QUANTISTICA – SPAZIO DELLE CONFIGURAZIONI
Mostra altri risultati Nascondi altri risultati su Fisica matematica (3)
Mostra Tutti

moto

Dizionario delle Scienze Fisiche (1996)

moto mòto [Der. del lat. motus -us, dal part. pass. motus di movere "muovere"] [LSF] L'atto e l'effetto del muoversi, cioè dello spostarsi di un corpo da una posizione a un'altra; si contrapp. a quiete [...] e, f, 152 a, c. ◆ [MCF] M. instabile e linearmente instabile: v. instabilità fluidodinamica: III 222 c, f. ◆ [MCS] M periodo 2π. Si suppone sempre che le pulsazioni siano razionalmente indipendenti (ossia che Σniωi=0 sia possibile con ni interi solo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – BIOFISICA – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA
Mostra altri risultati Nascondi altri risultati su moto (4)
Mostra Tutti

vettore

Dizionario delle Scienze Fisiche (1996)

vettore vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] alla nozione di combinazione lineare di più v., già data sopra, compare subito quella di v. linearmente dipendenti (o indipendenti): più v. v₁,...,vk sono linearmente dipendenti se esistono k scalari r₁,...,rk non tutti nulli, tali che risulti r₁v ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su vettore (6)
Mostra Tutti
1 2
Vocabolario
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
wronskiano
wronskiano 〈vro-〉 agg. e s. m. – Che si riferisce al matematico polacco J. M. Wroński-Hoene (1778-1853). Determinante w., o semplicem. wronskiano, di n funzioni in una variabile x, è il determinante della matrice quadrata avente le varie righe...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali