L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] efficienza di un algoritmo (numero di passi, spazio di memoria, precisione, ecc.), che sono oggi al centro dell già nel 1709 Giovanni Poleni, professore di astronomia, matematica e fisica nell'Università di Padova. La macchina di quest'ultimo non era ...
Leggi Tutto
Sistemi dinamici. Origini e sviluppo
Giovanni Jona-Lasinio
La teoria dei sistemi dinamici è un settore della matematica pura e applicata che si è sviluppato intensamente a partire dagli anni Sessanta [...] propria svolta concettuale: infatti, tra le idee prevalenti tra i fisici vi era quella che per un sistema valesse solo l'alternativa moti ad avere storie molto diverse e a perdere memoria uno dell'altro. Questo fenomeno nella letteratura moderna ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] una serie di importanti articoli, tra cui spiccano la memoria di Ricci-Curbastro del 1895 e il lavoro congiunto del scrivere una serie di lavori sull'uso della geometria differenziale nella fisica moderna, il più noto dei quali è il volume Raum- ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] rappresentare con un sistema numerico lo stato di un sistema fisico. Da qui può nascere, provocatoriamente, l’ambizione di digitalizzare inserivano allora i numeri nella mente e nella memoria dei gemelli? Domanda affascinante che non trova tuttora ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] anche l'afelio di Giove si muova nelle stesse circostanze? In una memoria che meritò il premio dell'Académie di Parigi per l'anno 1752 un'opera che è stata definita "a fondamento della moderna fisica teorica" (Gutzwiller 1998, p. 613). Qui la ...
Leggi Tutto
Computazionali, metodi
Alfio Quarteroni
I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] di risorse (tempo di calcolo, occupazione di memoria) necessaria per calcolare la soluzione ūn. L' del piano (d=2) o dello spazio (d=3), molti problemi fisici si possono modellare con il seguente problema matematico: trovare una funzione u ...
Leggi Tutto
BORELLI, Giovanni Alfonso
Ugo Baldini
Nacque a Napoli il 28 genn. 1608 da Laura Borrello (Porrello, Vorriello), moglie di un soldato spagnolo della guarnigione del Castel Nuovo, Miguel Alonso "de Varoscio", [...] storia della vulcanologia, in Atti d. Acc. Pontaniana, XXXVI (1906), memoria n. 4; Id., Di un'opera di G.A.B. sull'eruzione (1907), pp. 111-17; Id., E. Torricelli e G.A.B., in Riv. di fisica,mat.e sc. naturali, IX (1908), pp. 385-402; Id., G.A.B.e la ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] dunque assolutamente necessario definire nuovi algoritmi.
In una memoria del 1810 riguardante l'orbita dell'asteroide Pallade, la possibilità di ridurre della metà il numero delle misure fisiche da effettuare per ottenere una data precisione e ciò è ...
Leggi Tutto
DE GIORGI, Ennio
Enrico Moriconi
Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich.
La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] -441, e Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, in Memorie dell’Accademia delle scienze di Torino, classe di scienze fisiche, matematiche e naturali, 1957, n. 3, pp. 25-43), nei quali viene fornita ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] a fondamento di una teoria geometrica che parlasse davvero del mondo fisico in cui viviamo. Il fatto che i corpi nello spazio non euclidea
Nello stesso anno in cui fu pubblicata la memoria di Riemann vide la luce un altro scritto di enorme interesse ...
Leggi Tutto
memoria
memòria s. f. [dal lat. memoria, der. di memor -ŏris «memore»]. – 1. a. In generale, la capacità, comune a molti organismi, di conservare traccia più o meno completa e duratura degli stimoli esterni sperimentati e delle relative risposte....
mente
ménte s. f. [lat. mens mĕntis, affine al lat. meminisse e al gr. μιμνήσκω «ricordare»]. – 1. Il complesso delle facoltà umane che più specificamente si riferiscono al pensiero, e in partic. quelle intellettive, percettive, mnemoniche,...