Complessità sociale
Niklas Luhmann
Storia del concetto di complessità
Il concetto di complessità designa la possibilità di descrivere l'unità (di un sistema, di un ambiente, del mondo, ecc.) ricorrendo [...] dai tecnici e di disfarsi, come se si trattasse di un corpo estraneo, delle corrispondenti teorie dei modelli, delle simulazioni matematiche, e in generale di tutto ciò che aveva sentore di 'ingegneria dei sistemi'. L'alternativa veniva formulata ...
Leggi Tutto
Microottica
Roberto Pizzoferrato
Non sono molti i settori della fisica che, nell’ambito del generale progresso tecnologico dei primi anni del 21° sec., stanno mostrando anche particolari segni di vitalità [...] e, in molti casi, richiesto lo sviluppo di specifici modelli di analisi e calcolo per fenomeni ottici del tutto nuovi. un campo già da anni di grande interesse per la comunità dei matematici e dei fisici ottici. In questo caso si cerca di sfruttare ...
Leggi Tutto
L'Ottocento: fisica. Il caso francese
Matthias Dörries
Il caso francese
A metà del XIX sec., il laboratorio di Henri-Victor Regnault (1810-1878) al Collège de France di Parigi figurava come il più promettente [...] Biot dal 1801 fino alla sua morte, e successivamente dal matematico Joseph-Louis-François Bertrand. La seconda fu tenuta da fisici laboratorio di Giessen, che a sua volta divenne il modello per i laboratori francesi nella seconda metà del secolo. ...
Leggi Tutto
Il linguaggio degli SMS
Giuseppe Antonelli
La scrittura del Duemila
La scrittura di messaggi attraverso il telefono cellulare (SMS, Short Message Service) ha iniziato a diffondersi di pari passo con [...] – rari – in cui l’uso è determinato dal modello angloamericano o per la grafia (italiano campi1 ‘campione’) o – perché precedente all’avvento della lingua digitata – l’impiego di operatori matematici come x ‘per’ (anche in xké, sxiamo e simili) e + ...
Leggi Tutto
Felice Testa
Abstract
I diritti di informazione e consultazione, strumento di protezione degli interessi collettivi dei lavoratori, hanno ad oggetto la tutela della conoscenza dei fatti che incidono [...] complemento dell’informazione latamente intesa. Mutuando concetti matematici, fra gli elementi (attività) dell’informazione idonea ad incidere sia che venga declinata secondo modelli di rappresentanza diretta, sia che la sua declinazione ...
Leggi Tutto
La seconda rivoluzione scientifica: scienze biologiche e medicina. Dall'eugenica alla genetica umana
Daniel J. Kevles
Dall'eugenica alla genetica umana
L'eugenica è una disciplina generalmente associata [...] dagli anni Trenta. I gruppi sanguigni mostravano un modello di ereditarietà che sembrava conforme alle leggi di Mendel a dichiarare che in quel momento l'applicazione dei metodi matematici non era più un fattore dominante, mentre erano in ascesa ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Musica e scienza
Paolo Gozza
Il pensiero scientifico europeo non è pensabile in termini storico-culturali senza la musica. L’arte dei suoni ha avuto nella cultura europea una storia peculiare, molto [...] ca.-524 o 526) formula nel De institutione musica, il modello del sapere musicale fino alle soglie della cultura romantica (Boezio, ha diviso, e per la prima volta la fisico-matematica inaugura il transito della musica dal numero e dalla geometria ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Collezionismo e viaggi scientifici
Giuseppe Olmi
Collezionismo e viaggi scientifici
Raccolte e resoconti
Nell'ultimo quarto del XVI sec. il naturalista [...] eseguì gli acquerelli su pergamena che sarebbero serviti come modello per le 60 incisioni su rame del sontuoso per il tramite dell'Académie des Sciences che fornì numerosi strumenti matematici e astronomici (Guy Tachard, Voyage de Siam, des pères ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Il problema della generazione
Walter Bernardi
Il problema della generazione
Scienza e filosofia nella controversia sulla generazione animale
Il [...] a numerosi tentativi di mediazione e di sincretismo. Nel modello di Aristotele la formazione dell'embrione era il risultato dell , tra l'altro, accordarsi con i recenti studi matematici sul calcolo infinitesimale e con l'idea della divisibilità della ...
Leggi Tutto
L'Eta dei Lumi: matematica. La meccanica del continuo
James Cross
La meccanica del continuo
La trattazione della meccanica del continuo nel XVIII sec., in particolare dell'elasticità e della meccanica [...] meno per la resistenza), era un argomento centrale del Settecento, ma solo nel Novecento si arrivò a qualche ragionevole modellomatematico. Newton e i Bernoulli formularono leggi potenti in grado di spiegare la resistenza al moto in un mezzo viscoso ...
Leggi Tutto
matematica
matemàtica (ant. e raro mattemàtica) s. f. [dal lat. mathematĭca (sottint. ars), gr. μαϑηματική (sottint. τέχνη); v. matematico]. – 1. a. Originariamente, la scienza razionale dei numeri (aritmetica, intesa come scienza della quantità...
modello
modèllo s. m. [lat. *modĕllus, dim. di modŭlus: v. modulo]. – 1. a. In genere, qualsiasi oggetto reale che l’artista si propone di ritrarre, o che un artigiano, un operaio abbia dinanzi a sé per costruirne un altro uguale o simile,...