Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] ha inteso che il detto maestro Antoniomaria vi propose tutti li suoi 30 che vi conducevano in Algebra in un capitolo di cosa e cubo equal a numero. E che voi trovasti regola generale a tal capitolo […]. Et per tanto sua eccellentia vi prega che ...
Leggi Tutto
L'Universo matematico
John D. Barrow
(Astronomy Centre, University of Sussex, Brighton, Gran Bretagna)
Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] dell'antichità, che fu il primo a fare un uso sistematico dei simboli algebrici, usando simboli speciali per le quantità incognite, i reciproci e le potenze dei numeri, e che risolse molte equazioni di questo tipo. Questi problemi hanno più di ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] entrambi […] È altrettanto ovvio che branche della matematica diverse richiedono doti diverse. In alcune, come nella teoria algebrica dei numeri, o in quel gruppo di teorie che va complessivamente sotto il nome di Geometria, sembra […] importante per ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi
Marouane Ben Miled
La tradizione araba del Libro X degli Elementi
La storia delle letture [...] X dopo il XIII secolo
Le quantità irrazionali si erano ormai affermate e intervenivano insieme ai numeri nei libri di aritmetica e di algebra. Nei decenni successivi, i commenti al Libro X si fecero più rari, limitandosi strettamente agli irrazionali ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] disciplina, insieme con un cambiamento del suo oggetto. Sebbene all'inizio fosse impiegata in problemi di natura numerica, l'algebra cominciò a essere applicata anche nello studio di problemi geometrici e, man mano che si sviluppava una notazione ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] Gromov-Witten più generali e cioè la geometria degli spazi dei moduli Mg,n(V,β).
La geometria numerativa dello spazio dei moduli delle curve algebriche
Il termine curva designerà una curva completa non singolare definita su ℂ o, ciò che è lo stesso ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] familiare. Fino a un certo punto le sue trasformazioni algebriche appartengono, per usare il linguaggio informatico moderno, alla 'manipolazione formale'; il resto, cioè l'applicazione numerica, per dirla ancora nel linguaggio di oggi, va pensato ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] François Lacroix (1765-1843) furono raccolti per la prima volta, in capitoli a essi appositamente dedicati, gli aspetti numerici dell'algebra e dell'analisi. Il suo Traité du calcul différentiel et du calcul intégral (1797-1800), ristampato più volte ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] e se per ogni x∈X esistono un intorno V di x in X e un numero M>0 tali che per tutte le funzioni f ∈H risulti ∥Df(y)∥≤M . Ciò significa che det(U−λI)=0 e questa è un'equazione algebrica in λ di grado n, che ha quindi almeno una radice e al ...
Leggi Tutto
Computazionali, metodi
Alfio Quarteroni
I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] Gk costituirà un'opportuna approssimazione della matrice A, e il processo iterativo ricomprenderà i classici metodi iterativi dell'algebra lineare numerica (di Jacobi, di Gauss-Seidel, di Richardson, del gradiente, e così via). Indicato con ek=x−xk l ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...