algebricoalgèbrico [agg. (pl.m. -ci) Der. di algebra] [ALG] Qualifica di ente matematico la cui definizione è connessa con polinomi a coefficienti in un campo numerico (polinomi a.). ◆ [ANM] Curva piana [...] , simboli letterali e indeterminate, queste ultime sottoposte soltanto a operazioni algebriche. ◆ [ANM] Numero a.: numero reale o complesso che sia soluzione di un'equazione algebrica. ◆ [ALG] Struttura a.: uno dei tre tipi fondamentali di strutture ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] Inoltre, π1,…,πt sono unicamente determinati da α, a meno dell'ordine e della moltiplicazione per ±1 e ±i.
Corpi di numerialgebrici
Se un numero complesso α è una radice di una equazione polinomiale f(α)=0, dove f(x)=xn+a1xn−1+…+an ha coefficienti ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] minimo grado è sempre del tipo 1, 2, 4, 8, 16,…, ossia una potenza 2m di 2. Per contro, esistono numerialgebrici di qualsiasi minimo grado assegnato. Per es., il problema di duplicazione del cubo porta a costruire un segmento di lunghezza
questo ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] se, per es., C è il c. razionale, C̅ è il cosiddetto c. dei numerialgebrici (radici di equazioni a coefficienti razionali). Dire che non tutti i numeri reali sono algebrici, equivale a dire che il c. reale non può essere ottenuto da quello razionale ...
Leggi Tutto
Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] invece dall’eventuale presenza nell’insieme di altre strutture (si pensi che nell’insieme dei numeri reali sono simultaneamente presenti ben tre diverse strutture: algebrica, topologica e d’ordine; e per es. la relazione di maggiore e minore non è ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] dominio di razionalità. Quest'ultimo è un'estensione finita del campo dei numeri razionali (esistono anche estensioni infinite: König fornisce l'esempio del campo di tutti i numerialgebrici).
L'argomento di maggiore interesse del libro di König è la ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] leggi di reciprocità e al teorema di Fermat. D'altra parte i matematici del XIX sec. si interessavano anche ad altri numerialgebrici, cioè ai numeri θ soluzioni di equazioni della forma anθn+an−1θn−1+…+a1θ+a0=0, con gli ai interi ordinari. Lo studio ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] (Gel´fond, Linnik) e negli anni Sessanta questa direzione di studi venne coronata dal teorema di A. Baker: se α1,…,αm sono numerialgebrici, b1,…,bm numeri interi, B=max(∣b1∣,…,∣bm∣,3) e Δ=b1logα1+…+bmlogαm≠0 allora ∣Δ∣>B−c con c=c(α1,…,αm)>0 ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] . si è evidenziata una certa analogia tra teoria dei numerialgebrici e geometria algebrica; più precisamente, tra l'anello dei numerialgebrici e quello delle funzioni algebriche. Il libro Algèbre commutative (AC) si propone di sviluppare concetti ...
Leggi Tutto
L'Eta dei Lumi: matematica. La teoria dei numeri
Günther Frei
La teoria dei numeri
La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] del campo ciclotomico delle radici cubiche dell'unità
preparando in tal modo il terreno allo studio dell'aritmetica dei numerialgebrici. Per l'esponente n=5 Legendre e Dirichlet riuscirono a dimostrare la congettura di Fermat nel 1825, e la ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...