• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
webtv
63 risultati
Tutti i risultati [1218]
Storia della matematica [63]
Matematica [306]
Fisica [136]
Algebra [117]
Temi generali [109]
Fisica matematica [84]
Analisi matematica [84]
Biografie [78]
Economia [68]
Filosofia [62]

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] dimostra il seguente teorema: dato un irrazionale algebrico α e detta β la sua misura di irrazionalità, definita come l'estremo superiore dei numeri reali b tali che ∣α−a/q∣⟨q−b per infiniti razionali a/q, si ha β=2. Ciò risolve un classico problema ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1991-2000

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1991-2000 1991-2000 1991 Il sistema operativo Linux. Uno studente finlandese, Linus Torvalds, sviluppa il sistema operativo Linux. Il sistema può essere distribuito, [...] di AD, mostrando che opportune ipotesi di determinatezza permettono di stabilire proprietà basilari degli insiemi di numeri reali, come la Lebesgue-misurabilità, e inducono una struttura molto interessante sull'universo degli insiemi. Scoperta la ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – BIOCHIMICA – STORIA DELLA BIOLOGIA – STORIA DELLA CHIMICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

Scienza greco-romana. Euclide e la matematica del IV secolo

Storia della Scienza (2001)

Scienza greco-romana. Euclide e la matematica del IV secolo Reviel Netz Euclide e la matematica del IV secolo Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] le nostre nozioni di rapporto e proporzione fanno parte di un sistema nel quale le grandezze si esprimono con numeri reali e, pertanto, possiamo parlare di moltiplicazioni e divisioni. Senza di ciò è difficile capire cosa significhi l’espressione ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] è un semplice esempio che chiarisce alcuni aspetti importanti del teorema fondamentale dell'algebra; esso riguarda la natura dei numeri reali e della nozione di continuità, ma non ha nulla a che fare con l'algebra stessa. Molti matematici iniziarono ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] generalizzazione delle ricerche di Kummer sia alla nozione di numero. Per esempio, definì i numeri reali a partire da insiemi di numeri razionali (Dugac 1976). Un insieme di "numeri veramente esistenti" gli sembrava più concreto di certi criteri ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] continuità, come Dedekind mostrava provando il teorema secondo cui, per una qualunque sezione (A1,A2) di numeri reali, esiste uno e un solo numero reale α, dal quale la sezione è prodotta. Mentre ultimava la redazione del suo scritto Dedekind venne a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] biunivoca si rivela lo strumento decisivo. È possibile, chiede Cantor a Dedekind, dimostrare che l'insieme dei numeri reali e quello dei numeri naturali sono equipotenti, ossia che si può stabilire una corrispondenza biunivoca tra essi? E tra i punti ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La civiltà islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi Marouane Ben Miled La tradizione araba del Libro X degli Elementi La storia delle letture [...] due semplici surdi e incommensurabili fra loro). Il complesso di questi oggetti forma ciò che oggi chiamiamo insieme dei numeri reali positivi definibili per radicali. Se in Euclide il concetto di razionalità era relativo, e dipendeva dalla razionale ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria Emily Grosholz La rivoluzione cartesiana e gli sviluppi della geometria La rivoluzione [...] . Fu questa trasformazione che, in ultima analisi, condusse nel XIX sec. alla creazione della retta dei numeri reali, un ibrido di aritmetica e geometria. Anche un altro orientamento ‒ dovuto all'imporsi di problemi pratici nel campo della matematica ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] m) con (p,q) se e solo se n/m=p/q, ossia nq=mp. La rappresentazione di Cantor dei numeri reali prende una successione di numeri razionali r=(r0,…,rn,…) per rappresentare quando r soddisfa il criterio (interno) di convergenza di Cauchy; allora r=(r0 ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO
1 2 3 4 5 6 7
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
reale²
reale2 reale2 agg. [dal lat. mediev. realis, der. di res «cosa»]. – 1. Che è, che esiste veramente, effettivamente e concretamente (contrapp., nell’uso com. e generico, a immaginario, illusorio e anche a apparente, ideale, possibile): le mie...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali