Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] g)=Im(f); cioè, se g(b)=0 se e solo se esiste a∈A tale che f(a)=b. Chiaramente due spazi topologici omeomorfi hanno gli stessi gruppi di omologia; questo fatto fornisce un importante strumento d’indagine, anche se non vale sempre l’inverso (due spazi ...
Leggi Tutto
Anatomia
N. del seno (o n. seno-atriale) Formazione anatomica situata nell’atrio destro del cuore, in corrispondenza dello sbocco della vena cava superiore, importante nella regolazione del ritmo cardiaco.
Astronomia
Per [...] ossia di una curva semplice chiusa non riducibile con deformazione continua a una circonferenza (n. banale). Tutti i n. sono omeomorfi tra loro, tuttavia a causa della diversa maniera con cui si immergono in R3 essi vengono classificati in tipi di n ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] e il problema della descrizione dello spazio fisico erano le motivazioni alla base del problema di sapere se ℝn e ℝm sono omeomorfi per n≠m. Georg Cantor (1845-1918) aveva dimostrato che esistono corrispondenze biunivoche tra ℝn e ℝm per ogni m e n ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] due s. topologici S ed S′ si considerano equivalenti, aventi cioè le stesse proprietà topologiche, quando sono omeomorfi, quando cioè esiste un omeomorfismo tra S ed S′.
Accanto alla nozione di intorno ricordiamo anche quella di insieme chiuso di uno ...
Leggi Tutto
Geometria
Edoardo Vesentini
Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche [...] il numero di Euler della superficie X (ed è uguale alla somma alternata dei numeri di Betti di X). Due superfici compatte sono omeomorfe se e soltanto se hanno lo stesso numero di Euler e sono ambedue orientabili o ambedue non orientabili. Se X è una ...
Leggi Tutto
omeomorfismo
s. m. [der. di omeomorfo]. – 1. In cristallografia morfologica, fenomeno per cui due sostanze presentano costanti cristallografiche con valori molto vicini. 2. In matematica, corrispondenza biunivoca e bicontinua tra due spazî...