• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
11 risultati
Tutti i risultati [82]
Storia della matematica [11]
Matematica [37]
Geometria [17]
Analisi matematica [9]
Fisica [9]
Fisica matematica [9]
Algebra [8]
Temi generali [8]
Biografie [6]
Medicina [5]

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] ), in due volumi (1828, 1831), egli studiava da un punto di vista proiettivo la geometria piana delle coniche con tecniche algebriche simili a quelle adottate da Möbius. La reale potenza di questo metodo venne però in luce soltanto nei suoi libri del ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] di una sintesi piuttosto che di una enciclopedia. Il piano dell'opera (Tav. II) comprende una prima parte consacrata sua topologia, la distanza euclidea, e prosegue con lo spazio proiettivo reale ℙn. Il settimo capitolo tratta i sottogruppi e i ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] proiettiva. Si può estendere il piano aggiungendo una retta e ottenere il gruppo delle proiezioni di questo piano 'proiettivo cerchio si può prendere come spazio base, e i numeri reali come fibra. Vi sono essenzialmente due distinti spazi totali: il ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La logica e i fondamenti della matematica tra Ottocento e Novecento

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

La logica e i fondamenti della matematica tra Ottocento e Novecento Mario Piazza I fondamenti della geometria Nella seconda metà dell’Ottocento, in tutta Europa il baricentro delle ricerche geometriche [...] finite nella storia della geometria: mediante l’esempio del piano proiettivo finito con sette punti e sette linee, egli mostra che e culminato con Richard Dedekind (1831-1916): i numeri reali sono definiti in termini di numeri razionali e quindi di ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo David E. Rowe I problemi di Hilbert e la matematica del nuovo secolo Problemi matematici [...] afferma che la cardinalità del continuo dei numeri reali è ℵ1, il più piccolo numero cardinale Rohn (1855-1920). Le sue radici risalivano al 1876, quando Harnack dimostrò che nel piano proiettivo una curva di grado n non può avere più di 1/2(n−1)(n− ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] e in generale non lo è, si può immaginare di tagliare il piano lungo l'asse reale negativo, da 0 a −∞. Se si fa variare z su un le idee di Riemann nel linguaggio della geometria proiettiva delle curve algebriche e di ritornare all'analisi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] xn+b=0 ha come soluzioni la radice reale n-esima di −b moltiplicata per le radici volta è un sottogruppo del gruppo proiettivo) è possibile definire una gerarchia tra uno spostamento finito ogni punto del piano eccetto l'origine, essa costituisce un ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] un 'substrato reale' alla geometria di Lobačevskij, ossia un modello euclideo del piano iperbolico. A partire dall'espressione dell'elemento lineare di una superficie con curvatura costante negativa, Beltrami otteneva un modello proiettivo della ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] un'equazione come curva nello spazio proiettivo. Jules-Henri Poincaré (1854-1912 sfera di Riemann, o nel piano complesso o nel disco unitario. semplice trucco formale secondo cui una coppia di numeri reali x e y si possono fondere insieme in una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2
Vocabolario
piano²
piano2 piano2 s. m. [lat. planum «pianura» (propr. neutro sostantivato dell’agg. planus: v. la voce prec.); nel sign. 7 ricalca il fr. plan] (pl. ant. le piànora). – 1. Superficie piana, generalm. orizzontale, ma anche verticale o variamente...
punto²
punto2 punto2 s. m. [lat. pŭnctum, lat. tardo pŭnctus, der. di pŭngĕre «pungere»: propr. «puntura, forellino»]. – 1. a. Nel cucito e nel ricamo, l’atto del passare il filo attraverso la stoffa e ripassarlo a breve distanza, e il risultato...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali