stereografia matematica In geometria, metodo di rappresentazione grafica di un solido sopra un piano. Proiezione stereografica di una sfera Fissato un punto N (polo) su una sfera (fig. 1) e un piano π [...] parallelo al pianotangente alla sfera in N, si fa corrispondere a un punto generico P della sfera la sua proiezione P′ fatta da N sul piano. Si realizza così una corrispondenza biunivoca tra i punti del piano e i punti della sfera. Essa gode di ...
Leggi Tutto
In genere, qualsiasi cosa che avvolge strettamente.
Matematica
Inviluppo di una famiglia di curve piane È una curva L tale che per ogni suo punto P passi una e una sola curva della famiglia data avente [...] hanno vertici nei vari punti dell’asse di σ e sono circoscritti a tale superficie; in figura sono rappresentati due coni k, k′ e i pianitangenti a σ nei due punti P, P′. Se f(x, y, z, t)=0 è l’equazione delle superfici della famiglia (al variare del ...
Leggi Tutto
singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o [...] nel punto P0. Geometricamente ciò può configurarsi, per es. per una curva, nella mancanza di retta tangente e, per una superficie, nella mancanza di pianotangente. Per le funzioni di più variabili definite implicitamente, c’è una s. nei punti in cui ...
Leggi Tutto
In geometria, ogni superficie del 2° ordine, la cui equazione può essere ridotta alla forma
,
nella quale le tre costanti a, b, c ( semiassi dell’e.) sono in generale disuguali. A tale forma può essere [...] ridotta l’equazione di ogni quadrica: a) dotata di punti reali; b) a punti ellittici, cioè tale che il pianotangente in un punto reale P ha in comune con la superficie, dal punto di vista reale, solo il punto P; c) limitata. Il volume della regione ...
Leggi Tutto
Condizione di ciò che è inclinato rispetto alla linea verticale.
Geografia
Si definisce p. o inclinazione reale della superficie topografica in un punto l’angolo formato dal piano orizzontale con il piano [...] dove questi fanno passaggio alle aree pedemontane.
Matematica
Per p. di una retta rispetto a un piano s’intende la tangente trigonometrica dell’angolo formato dalla retta con il piano; quest’angolo prende il nome di inclinazione della retta sul ...
Leggi Tutto
In geometria, superficie costituita da una semplice infinità di rette, dette generatrici; ogni linea tracciata sopra la r. e che intersechi la generatrice generica in un sol punto si dice direttrice della [...] È una r. del terz’ordine; ammette due direttrici rettilinee, l’una semplice e l’altra doppia. R. sviluppabile R. i cui pianitangenti nei vari punti di una medesima generatrice sono tutti coincidenti tra loro; ciò equivale a dire che 2 generatrici ...
Leggi Tutto
In matematica, superficie chiusa e limitata dello spazio ordinario che sia attraversata da ogni retta al più in due punti; un o. è perciò la frontiera di un corpo convesso, cioè di una parte convessa dello [...] spazio. Si suppone poi, di solito, che l’o. possieda in ogni punto un pianotangente e che questo sia variabile con continuità. Sono esempi di o. gli ellissoidi e le sfere.
Gli o. godono di interessanti proprietà geometriche, tra cui: a) indicando ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] da un sistema di funzioni (1), otteniamo una metrica riemanniana
dove
Da un punto di vista geometrico lo spazio tangente Tp(M) è considerato come un piano n-dimensionale in RN e la struttura euclidea di RN induce il prodotto interno su Tp(M) dato ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] . Per esempio, data una superficie, in generale essa ha in ogni punto P un pianotangente e una normale alla superficie in P. Si possono considerare i piani che contengono la normale e studiare le curve che essi tagliano sulla superficie. Per quasi ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] -1873), quella che egli chiamò "indicatrice": sostituendo R(φ) con
la [1] si scrive in una forma più chiara. Riportando nel pianotangente in P i valori di
nelle varie direzioni si ottiene, se la curvatura gaussiana è positiva, un'ellisse, e se è ...
Leggi Tutto
tangente1
tangènte1 agg. e s. f. [dal lat. tangens -entis, part. pres. di tangĕre «toccare»]. – 1. agg. In geometria, di ente (retta, linea, piano, superficie, ecc.) che abbia un particolare comportamento con altro ente, definito caso per...
piano1
piano1 agg. e avv. [lat. planus «di superficie uguale; facile, chiaro, intelligibile»]. – 1. agg. a. Che presenta una superficie di andamento uniforme, senza avvallamenti o rilievi: via p., senza salite o discese; terreno p.; il lago...