• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
lingua italiana
68 risultati
Tutti i risultati [412]
Analisi matematica [68]
Matematica [173]
Algebra [91]
Fisica [72]
Fisica matematica [62]
Temi generali [40]
Storia della matematica [27]
Storia della fisica [26]
Statistica e calcolo delle probabilita [21]
Ingegneria [17]

riducibile

Dizionario delle Scienze Fisiche (2012)

riducibile riducìbile [agg. "che si può portare a una determinata condizione (non sempre con diminuzione di valore)" Der. di ridurre (→ ridotto)] [CHF] Di sostanza capace di subire una reazione di riduzione. [...] la cui equazione è r. (v. oltre). ◆ [ANM] Equazione algebrica r.: quella ottenuta uguagliando a zero un polinomio r. (v. oltre). ◆ [ANM] Polinomio r.: un polinomio f in quante si vogliano variabili, i cui coefficienti appartengono a un certo campo di ... Leggi Tutto
CATEGORIA: CHIMICA FISICA – ALGEBRA – ANALISI MATEMATICA

formule di Newton-Cotes

Enciclopedia della Scienza e della Tecnica (2008)

formule di Newton-Cotes Alfio Quarteroni Per calcolare numericamente l’integrale definito I(f)=∫∮]] f (x)dx, le formule di Newton-Cotes si ottengono sostituendo la funzione integranda f(x) con un polinomio [...] in [a,b]. Se indichiamo con {x}}{[}=0 i nodi di interpolazione e con {L}(x)}{[}=0 i polinomi di Lagrange di grado n definiti sui nodi {x}}, ovvero dei polinomi algebrici di grado n tali che L∥(x})=δ∥} per i,j=0,…,n, l’approssimazione del valore I ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FORMULE DI NEWTON-COTES – POLINOMIO DI LAGRANGE – INTEGRALE DEFINITO – ALFIO QUARTERONI – INTERPOLAZIONE
Mostra altri risultati Nascondi altri risultati su formule di Newton-Cotes (1)
Mostra Tutti

forma

Dizionario delle Scienze Fisiche (1996)

forma fórma [Lat. forma] [LSF] L'aspetto esteriore di un oggetto o di una sua rappresentazione: f. d'onda di un segnale (v. oltre); per traslato, grandezza, spesso data come coefficiente o fattore, che [...] una f. algebrica o differenziale di primo grado o del primo ordine. ◆ [ALG] F. quadratica: la f. corrispondente a un polinomio di secondo grado. ◆ [ALG] F. quadratica fondamentale: v. curve e superfici: II 79 c. ◆ [TRM] Coefficiente, o fattore, di f ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA

Laguerre Edmond-Nicolas

Dizionario delle Scienze Fisiche (1996)

Laguerre Edmond-Nicolas Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] 1-x)y'+ay=0, con a costante reale; nel caso particolare che a sia un numero naturale n, una sua soluzione è il polinomio (polinomio di L.) definito dalla formula Ln(x)=expx dn[xn exp(-x)]/dxn, oppure, per ricorrenza, dalla formula nLn=(2n-x-1)Ln-1 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: ACCADEMIA DELLE SCIENZE DI PARIGI – EQUAZIONE DIFFERENZIALE – MECCANICA QUANTISTICA – CAMPO REALE – POLINOMIO
Mostra altri risultati Nascondi altri risultati su Laguerre Edmond-Nicolas (1)
Mostra Tutti

Hensel Kurt

Dizionario delle Scienze Fisiche (1996)

Hensel Kurt Hensel 〈hènsel〉 Kurt [STF] (Königsberg 1861 - Marburgo 1941) Prof. di matematica nell'univ. di Marburgo (1902). ◆ [ANM] Lemma di H.: dato un anello A con ideale massimale I, lemma soddisfatto [...] A se ogni fattorizzazione di un polinomio P(x) su A può essere ottenuta da una fattorizzazione della restrizione di P(x) all'anello A modulo I; ha importanti applicazioni nell'algebra commutativa e dunque nella manipolazione algebrica dei polinomi. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA

iperellittico

Dizionario delle Scienze Fisiche (1996)

iperellittico iperellìttico [agg. (pl.m. -ci) Comp. iper- e ellittico] [ALG] Curva i.: curva di genere 2, così chiamata in quanto le curve di genere 1 sono dette curve ellittiche; mediante una trasformazione [...] birazionale è riducibile alla forma y2=(x-a₁)... (x-an), in cui compare un polinomio a radici distinte. ◆ [ANM] Funzione i.: altro nome di una funzione abeliana di due variabili. ◆ [ANM] Integrale i.: integrale abeliano sopra una curva di genere 2. ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

algèbrico

Dizionario delle Scienze Fisiche (1996)

algebrico algèbrico [agg. (pl.m. -ci) Der. di algebra] [ALG] Qualifica di ente matematico la cui definizione è connessa con polinomi a coefficienti in un campo numerico (polinomi a.). ◆ [ANM] Curva piana [...] le cui coordinate verificano un'equazione a. in due variabili. ◆ [ANM] Equazione a.: quella ottenuta uguagliando a zero un polinomio a. in due o più variabili. ◆ [ALG] Espressione a.: ogni scrittura in cui compaiono numeri, simboli letterali e ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su algèbrico (2)
Mostra Tutti

Schwarz Karl Hermann Amandus

Dizionario delle Scienze Fisiche (1996)

Schwarz Karl Hermann Amandus Schwarz 〈švarz〉 Karl Hermann Amandus [STF] (Hermsdorf, Slesia, 1843 - Berlino 1921) Prof. nelle univ. di Halle (1867), Zurigo (1869), Gottinga (1875), Berlino (1892). ◆ [ANM] [...] Classe di S.: l'insieme delle funzioni f(x):R→R di classe C∞ che tendono a zero più rapidamente di ogni polinomio, cioè tali che, per ogni n∈N, limn→∞xn f(x)=0. ◆ [ANM] Disuguaglianza di S. o di S.-Hölder: fondamentale nella teoria delle funzioni, è ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
TAGS: POLINOMIO – GOTTINGA – BERLINO – ZURIGO – SLESIA
Mostra altri risultati Nascondi altri risultati su Schwarz Karl Hermann Amandus (2)
Mostra Tutti

separabile

Dizionario delle Scienze Fisiche (1996)

separabile separàbile [agg. Der. del lat. separabilis, da separare, comp. di se- "a parte" e parare "approntare"] [CHF] Di sostanza che possa essere separata, mediante metodi chimici o fisici (→ separatore), [...] differenziale a variabili s.: quella che può ridursi a un'equazione i cui due membri possono essere integrati separatamente. ◆ [ANM] Polinomio s.: un polinomio p(x) di grado n in un campo C con radici distinte in C o anche in un altro campo compreso ... Leggi Tutto
CATEGORIA: CHIMICA FISICA – ALGEBRA – ANALISI MATEMATICA

Bernstein Benjamin Abram

Dizionario delle Scienze Fisiche (1996)

Bernstein Benjamin Abram Bernstein 〈bèrnstain〉 Benjamin Abram [STF] (Posvol, Lituania, 1881 - Berkeley, California 1968) Prof. di matematica nell'univ. di Berkeley (1928). ◆ [ANM] Polinomi di B.: introdotti [...] di B. relativo a f(x) e a I è Bn(x)=Σk=nk=0 [f(k/n)] (nk)xk(1-x)n-k. I polinomi di B. relativi a una funzione f(x) costituiscono una successione che converge uniformemente a f(x), e anche la successione delle loro derivate di un ordine qualsiasi ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
1 2 3 4 5 6 7
Vocabolario
polinòmio
polinomio polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado¹
grado1 grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali