Chebyshev Pafnutij L'vovic
Chebyshev (o Chebishev o Tchebyschef) 〈chibishòf〉 Pafnutij L'vovic [STF] (Okatovo 1821 - Pietroburgo 1894) Prof. di analisi matematica nell'univ. di Pietroburgo (1847). ◆ Disuguaglianza [...] la curva di attenuazione di un tale filtro, del tipo passa-basso (ft è la frequenza di taglio). ◆ [ANM] Nodi di Ch.: gli zeri dei polinomi di Ch. (v. oltre) Tn(x), dati dalla formula xr=cos[(2r-1)π/(2n)], con r=1, ..., n; sono tutti reali, distinti e ...
Leggi Tutto
Attributo di disciplina che utilizza nell’indagine teorica l’elaboratore elettronico come sistematico strumento di lavoro, per es. la meccanica c., la linguistica c.; si dice c. anche il procedimento che [...] di grado r; in questo caso i dati sono costituiti dagli r+1 coefficienti del polinomio e la soluzione dalle r radici complesse del polinomio P di grado r, la cui esistenza è assicurata dal teorema fondamentale dell’algebra. Pur essendo questo ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] , studiò le successioni un=(an−bn)/(a−b) e vn=an+bn, nel caso in cui a e b siano le radici di un polinomio di secondo grado a coefficienti interi primi tra loro. Gli un, per n dispari, dividono l'espressione x2−aby2; Lucas ne dedusse la legge ...
Leggi Tutto
razionale In matematica, numeri r. sono i numeri interi e frazionari, che esprimono il rapporto di due grandezze commensurabili. Originariamente si pensava (guidati dall’idea che ogni figura geometrica [...] di radice, e non a tutte le operazioni non razionali. Funzioni r. sono quelle che si esprimono come quoziente di due polinomi, in una o più variabili (la cui espressione cioè si ottiene a partire dalle variabili, mediante le sole quattro operazioni r ...
Leggi Tutto
ellittico
ellìttico [agg. (pl.m. -ci) Der. di ellisse "che riguarda l'ellisse"] [ALG] [ANM] Qualifica che in vari casi discende dalla proprietà dell'ellisse, che la distingue dalle altre coniche, di [...] la forma generale u=∫₀xR(x,Q1/2)dx, dove R è una funzione razionale dei suoi due argomenti e Q è un polinomio generico di 3° o 4° grado nella variabile x, così chiamati in quanto un integrale di tale specie fu introdotto inizialmente per esprimere ...
Leggi Tutto
Agraria
Legge del minimo
Legge che afferma che la quantità della produzione è regolata dall’elemento nutritivo contenuto nel terreno in proporzione minima rispetto agli altri. Corrisponde alla legge dei [...] dividendo il prodotto dei numeri per il loro massimo comun divisore.
Il minimo comune multiplo di due o più polinomi, considerati in una o più variabili, con coefficienti reali, o complessi, o appartenenti a un corpo qualsiasi, si definisce ...
Leggi Tutto
Legendre Adrien-Marie
Legendre 〈lëgŠàndr〉 Adrien-Marie [STF] (Tolosa 1752 - Parigi 1833) Prof. di matematica nell'École militaire di Parigi (1775); passò a dirigere, nel Bureau des longitudes (1787), [...] v. meccanica analitica: III 662 d. ◆ [ANM] Integrali ellittici di L.: v. sopra: Forme canoniche di Legendre. ◆ [ANM] Polinomi, o polinomi associati, di L.: polinomi che soddisfano l'equazione di L. (v. sopra), dati dalla formula Pn(x)=1/(n!2n)[dn (x2 ...
Leggi Tutto
Botanica
Si dice di un organo (per es., una foglia) quando il suo contorno ha quasi esattamente la forma di un ellisse, ha cioè i due estremi arrotondati; oppure, meno propriamente, quando i due estremi [...] , di lemniscata ecc.) è espressa da integrali della forma
,
dove R denota una funzione razionale dei suoi due argomenti e Q un polinomio generico di 3° o 4° grado nella variabile x. Integrali di tale forma si dicono perciò e.: A.-M. Legendre mostrò ...
Leggi Tutto
differenza
differènza [Der. del lat. differentia, da differens -entis "differente", part. pres. di differre "essere differente"] [ALG] Il risultato dell'operazione di sottrazione. ◆ [EMG] D. di potenziale [...] via; generic., la d. n-esima, definita come la d. della d. (n-1)-esima, s'indica con Δnf(x). Se f(x) è un polinomio di grado n, le d. n-esime sono costanti e quelle (n+1)-esime sono nulle; le proprietà delle d. finite si richiamano a proprietà del ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] di L.: v. variazioni, calcolo delle: VI 470 b. ◆ [ANM] Parentesi di L.: v. meccanica analitica: III 660 b. ◆ [ANM] Polinomio d'interpolazione di L.: v. calcolo numerico: I 407 c. ◆ [ASF] Punti di L.: → lagrangiano. ◆ [ANM] Resto in forma di L ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....