• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
Le parole valgono
lingua italiana
344 risultati
Tutti i risultati [344]
Matematica [96]
Fisica [88]
Fisica matematica [44]
Temi generali [42]
Analisi matematica [39]
Algebra [36]
Meccanica [24]
Meccanica quantistica [24]
Meccanica dei fluidi [21]
Biologia [20]

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] per analogia, è applicabile su qualsivoglia spazio vettoriale su C. Se per esempio H = L2(μ), (f ∣ g) = ∫ −fgdμ è un prodotto interno (prodotto scalare) su H, e ∥ f ∥ = (f ∣ f)1/2 definisce una norma su H. Uno spazio vettoriale H su C così normato si ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Fisica matematica: recenti sviluppi

Storia della Scienza (2003)

La grande scienza. Fisica matematica: recenti sviluppi Gianfausto Dell'Antonio Fisica matematica: recenti sviluppi La fisica matematica si può definire come la disciplina scientifica che si propone [...] Ω) (funzioni di Wightman) hanno delle proprietà di invarianza, di positività (conseguenza della positività del prodotto scalare hilbertiano) e di analiticità (conseguenza dell'ipotesi di positività dello spettro dell'energia). Wightman dimostrò anche ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] μ) e di L∞ℂ(X,μ). Lo spazio L2ℂ(X,μ) è particolarmente importante perché esso è uno spazio di Hilbert se si definisce il prodotto scalare di due classi f∼, g∼ ponendo [6] formula. La norma N2 su tale spazio è così (f∼∣f∼)1/2. Casi notevoli di spazi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

L'Età dei Lumi: matematica. Meccanica variazionale

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Meccanica variazionale Helmut Pulte Rüdiger Thiele Meccanica variazionale Le locuzioni 'meccanica classica' e 'meccanica newtoniana' sono, tradizionalmente, usate come sinonimi. [...] le direzioni delle forze a mano a mano considerate. Nella precedente scrittura moderna il lavoro virtuale è rappresentato come il prodotto scalare ∑ Ki δsi dei vettori Ki e δsi, in modo tale che gli stessi spostamenti virtuali δsi diventano visibili ... Leggi Tutto
CATEGORIA: MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] u∈L2(Ω) che hanno derivate, nel senso delle distribuzioni, in L2(Ω) e si annullano al bordo di Ω. H è uno spazio di Hilbert rispetto al prodotto scalare (u∣v)=∫Ω∇u∙∇vdx. Inoltre è noto che W01,2(Ω)⊂Lq(Ω) non appena 1≤q≤2*, dove 2*=2n/(n−2) se n>2 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie Jean Mawhin Equazioni differenziali ordinarie Accanto a sostanziali progressi nella teoria delle equazioni [...] suggeriranno ad Aleksandr Michajlovič Ljapunov (1857-1918) il suo secondo metodo in teoria della stabilità. ∑ si dice senza contatto se il prodotto scalare ⟨F′(y)∣p(y)⟩ del gradiente di F per p non si annulla in alcun punto di ∑. L'indice del campo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] ; tutta una serie di forme moltiplicative saranno soltanto abbozzate: le più note e utili sono il prodotto esterno e il prodotto interno o prodotto scalare. Il prodotto interno, che a partire da vettori dello stesso ordine ha per risultato uno ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Wavelets

Enciclopedia del Novecento (2004)

Wavelets IIgnazio D'Antone di Ignazio D'Antone SOMMARIO: 1. Introduzione. ▭ 2. La trasformata wavelet continua. ▭ 3. La trasformata wavelet discreta. ▭ 4. Analisi a multirisoluzione. ▭ 5. Proprietà [...] è ortogonale alle sue traslazioni per valori interi; ad esempio, nel caso della base di Haar, il prodotto scalare della ϕ(t) con qualunque sua traslazione di valori interi è nullo; b) il segnale a una data risoluzione contiene tutte le informazioni ... Leggi Tutto
TAGS: PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG – MOVING PICTURE EXPERTS GROUP – JEAN BAPTISTE JOSEPH FOURIER – TASSELLAZIONE DEL PIANO – TRASFORMATA DI FOURIER
Mostra altri risultati Nascondi altri risultati su Wavelets (3)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico Paolo Freguglia Gert Schubring Il calcolo geometrico Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] ha introdotto i vettori come elementi essenziali, definendo per essi le operazioni, in particolare il prodotto scalare (direct product) e il prodotto esterno (skew product). Egli era interessato non solo alle applicazioni in fisica matematica, ma ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

matrice

Enciclopedia della Matematica (2013)

matrice matrice tabella rettangolare di simboli, detti elementi della matrice, che rappresentano numeri reali, numeri complessi o, più in generale, elementi di un campo K o di un anello A. Gli elementi [...] prima e tante colonne quante ne ha la seconda. Date per esempio le matrici Amn e Bnp, la matrice prodotto Cmp = Amn ⋅ Bnp ha come elemento di posto (i, j) il prodotto scalare della i–sima riga di Amn con la j–sima colonna di Bnp. L’operazione non è ... Leggi Tutto
TAGS: LEGGE DI ANNULLAMENTO DEL PRODOTTO – MATRICE DEL CAMBIAMENTO DI BASE – MATRICE TRASPOSTA CONIUGATA – LINGUAGGI DI PROGRAMMAZIONE – MOLTIPLICAZIONE DI MATRICI
1 2 3 4 5 6 7 8 ... 35
Vocabolario
scalare¹
scalare1 scalare1 agg. e s. m. [dal lat. scalaris, der. di scalae -arum «scala» (v. scala)]. – 1. agg., non com. Fatto o disposto a scala; più com. in senso fig., che cresce o decresce gradualmente, graduato in progressione. a. Detto delle...
prodótto²
prodotto2 prodótto2 s. m. [part. pass. sostantivato di produrre]. – 1. Genericam., tutto ciò che la terra produce o che costituisce il risultato di una qualsiasi attività umana: p. agricoli, vegetali; i p. della terra, del suolo, dei campi,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali