La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] con parte reale 1/2 (che soddisfano cioè la congettura formulata da Riemann nel 1859) ha cardinalità che cresce con lo stesso ordine di N risultato e per i suoi lavori sulla funzione ζ di Riemann, Selberg riceverà la medaglia Fields nel 1950.
La mappa ...
Leggi Tutto
prodotto
prodótto [Part. pass. sostantivato di produrre, der. del lat. producere "portare avanti", comp. di pro- "davanti" e ducere "condurre"] [LSF] Generic., il risultato di qualcosa, spec. di un'attività, [...] , e in effetti varie funzioni di notevole importanza (per es., la funzione gamma di Eulero e la funzione zeta di Riemann) sono esprimibili come p. infinito: v. funzioni di variabile complessa: II 780 a. ◆ [ANM] P. integrale: di due funzioni in ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] nel trovare, detta pn la successione dei primi, una maggiorazione per lo scarto pn+1−pn in termini di pn. Dall'ipotesi di Riemann per la funzione ζ, tuttora indimostrata, segue
se α>1/2. L'inglese Martin Huxley, usando stime di densità per il ...
Leggi Tutto
BURGATTI, Pietro
Enzo Pozzato
Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] alle equazioni in due variabili di ordine n (Sull'estensione del metodo d'integrazione di Riemann alle equazioni lineari d'ordine n con due variabili indipendenti, in Rend. dell'Accad. naz. dei Lincei, cl.di sc. fis., s. 5, XV [1906], pp. 602-609 ...
Leggi Tutto
connessione
connessióne [Der. del lat. connessio -onis, dal lat. connexus (→ connesso) "l'essere connesso, il modo in cui si è connessi"] [ALG] [ANM] Generic., legame di dipendenza fra due o più grandezze [...] a certi requisiti di carattere differenziale e che si possono ritenere, in un certo senso, come generalizzazioni degli spazi di Riemann; a seconda del tipo di requisiti richiesti alle c. definite su questi spazi, si parla di spazi a c. affine ...
Leggi Tutto
GRAVITAZIONE
Edoardo Amaldi-Massimo Testa
(XVII, p. 770)
Dal 1915-16, quando A. Einstein pubblicò i primi lavori in cui poneva le basi della relatività generale (RG), fino alla metà del secolo questa [...] complessità matematica della teoria è notevole: in essa intervengono, in maniera naturale, la teoria generale delle superfici di Riemann e molti altri concetti più o meno sofisticati della geometria algebrica. Teorie di questo tipo sono in grado di ...
Leggi Tutto
L'Eta dei Lumi: matematica. La meccanica del continuo
James Cross
La meccanica del continuo
La trattazione della meccanica del continuo nel XVIII sec., in particolare dell'elasticità e della meccanica [...] in cui le equazioni per le velocità longitudinali e trasversali p, q soddisfano quelle che saranno poi chiamate 'equazioni di Cauchy-Riemann':
[1] ∂p/∂x=-∂q/∂y, ∂p/∂y=∂q/∂x,
che in seguito si ridurranno alla cosiddetta 'equazione di Laplace':
[2] ∂2p ...
Leggi Tutto
periodo
perìodo [Der. del lat. periodus, dal gr. períodos "circuito, giro", comp. di peri- "intorno" e hodós "strada"] [LSF] Per certi fenomeni, detti fenomeni periodici, il minimo intervallo di tempo, [...] al tempo di dimezzamento, che è la locuz. propria. ◆ [FSP] P. orbitale a quota zero: v. astronautica: I 203 b. ◆ [ALG] Matrice dei p.: v. Riemann, superfici di: V 5 f. ◆ [TRM] Raddoppio di p.: v.termodinamica irreversibile e sinergetica: VI 161 a. ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] , la prima stima non banale per il resto nel teorema dei numeri primi senza far uso delle proprietà della funzione zeta di Riemann. Tale risultato, comunque inferiore a ciò che è noto per via analitico-complessa, sarà migliorato da H.G. Diamond e J ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] di Hamilton e di quello di minima azione nell'elettrodinamica (comprendente potenziali dipendenti dal tempo) dovute a Riemann, Neumann, Ernst Christian Julius Schering, Enrico Betti, Gustav Holzmüller e altri; nella teoria del calore sono soprattutto ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...