• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
72 risultati
Tutti i risultati [473]
Matematica [72]
Fisica [104]
Filosofia [61]
Storia della fisica [55]
Temi generali [44]
Astronomia [42]
Biografie [40]
Storia della matematica [34]
Fisica matematica [29]
Storia del pensiero filosofico [29]

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] del problema, che, nel caso in cui, secondo la legge di Hooke, le estensioni siano proporzionali alle forze applicate lsoluzione è anonima e fu concordemente attribuita a Newton, su suggerimento di Johann I Bernoulli che aveva riconosciuto ex ungue ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] a partire dalla seconda metà dell'Ottocento, da Ernst Mach a Thomas Kuhn prevalse il punto di vista per cui la meccanica analitica è semplicemente una nuova formulazione 'matematicamente' interessante delle ben note leggi di Newton che non solleva ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] forme del secondo ordine (e dunque, nel piano, oltre le coniche). Di fatto, i seguaci di Newton in Gran serve solo a oscurare la verità e a far passare la voglia a chi legge" (p. X). Molti matematici del XVIII sec., che lavoravano in sintonia con ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] )=a0+a1+a2+…, dove le an sono funzioni di x, e la legge di ricorrenza è an+2=f(x)an+g(x di un esponente n frazionario; la somma finita del secondo membro diventa una serie infinita. Questa serie, che più tardi fu scelta tra tutti i risultati di Newton ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] di un corpo di massa m in coordinate cartesiane ortogonali (O,x,y,z): [1] md2x = (1/2)Xdt2, md2y = (1/2)Ydt2, md2z  = (1/2)Zdt2, dove X, Y, Z sono le componenti della forza motrice (fu forse la prima volta in cui la seconda legge da Newton per ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Logiche non standard

Enciclopedia della Scienza e della Tecnica (2007)

Logiche non standard Claudio Pizzi Alcune famiglie di logiche non standard sono costituite da logiche che sono estensioni assiomatiche di quella standard, mentre altre constano di logiche rappresentabili [...] secondo la proposta originaria di Robert C. Stalnaker) si ottiene la legge del terzo escluso condizionale A□→B A□→∉B, respinta da Lewis. Anche i modelli di Stalnakercomunque falsificano tre leggi di Costa 1980: Da Costa, Newton C.A., Ensayo sobre os ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: GEORG WILHELM FRIEDRICH HEGEL – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – GOTTFRIED WILHELM LEIBNIZ – RELAZIONE DI EQUIVALENZA

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] di equazioni) non lineare, il processo descritto è il paradigma di numerosi metodi classici, quali il metodo delle corde, di Newton con costante L rispetto al secondo argomento, si avrà ∣yj*−uj legge di conservazione (o un sistema di leggi di ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] sistema numerico. Nella seconda metà del XVII sec., con il calcolo integrale di Isaac Newton (1643-1727) e legge che governa questa evoluzione è rappresentata da una misura sullo spazio delle curve. Di solito il problema principale è la costruzione di ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] di calcolo comparivano direttamente nelle applicazioni, a seconda delle calcolo differenziale che va sotto il nome di 'metodo di Newton-Raphson' o 'metodo delle tangenti', e noti uno stato iniziale e una legge di evoluzione, a partire dai quali è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Simulazione, modelli di

Enciclopedia delle scienze sociali (1997)

Simulazione, modelli di Italo Scardovi Modelli e simulazioni nella scienza Secondo l'etimo latino, 'simulare' sta per 'render simile', come vuole la sua derivazione da similis; e tuttavia il verbo ha [...] pianeti che ruotano intorno al Sole diventano - nel sistema di Newton - punti euclidei che si attraggono con una forza direttamente in tutte le analisi di processi trattabili al calcolatore secondo leggi statistiche dedotte da campionamenti ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – METODI TEORIE E PROVVEDIMENTI
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – CALCOLO DELLE PROBABILITÀ – APPROSSIMAZIONE NUMERICA – CIRCOLAZIONE DEL SANGUE – PROGRAMMAZIONE LINEARE
Mostra altri risultati Nascondi altri risultati su Simulazione, modelli di (6)
Mostra Tutti
1 2 3 4 5 6 7 8
Vocabolario
légge
legge légge s. f. [lat. lex lĕgis, prob. affine a lĕgĕre, come equivalente del gr. λέγω «dire»]. – In generale, ogni principio con cui si enunci o si riconosca l’ordine che si riscontra nella realtà naturale o umana, e che nello stesso tempo...
colóre
colóre s. m. [lat. color -ōris]. – 1. a. Termine indicante, in fisica, sia la sensazione fisiologica che si prova sotto l’effetto di luci di diversa qualità e composizione (c. soggettivo), sia la luce stessa, monocromatica o policromatica (rispettivam....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali