• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
9 risultati
Tutti i risultati [49]
Analisi matematica [9]
Matematica [25]
Geometria [4]
Fisica [6]
Storia della matematica [6]
Algebra [5]
Ingegneria [3]
Geografia [2]
Geografia fisica [2]
Astronomia [2]

serie L di Dirichlet

Enciclopedia della Scienza e della Tecnica (2008)

serie L di Dirichlet Matteo Longo Sia m un numero intero. Un carattere di Dirichlet modulo m è una funzione χ:ℕ→ℂ tale che: (a) χ(1)=1; (b) χ(p+m)=χ(p) per ogni p∈ℕ (si esprime questo fatto dicendo [...] tutti gli interi n, si può dimostrare che la serie L(χ,s) è assolutamente convergente nel semipiano complesso {s∈ℂ tali che ✄(s)>1} formato dai numeri complessi s con parte reale ✄(s) maggiore di 1. Essa è inoltre convergente (non necessariamente ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: ASSOLUTAMENTE CONVERGENTE – FUNZIONE ZETA DI RIEMANN – SEMIPIANO COMPLESSO – FUNZIONI MEROMORFE – PIANO COMPLESSO

modulari, sostituzioni

Enciclopedia on line

In matematica, le sostituzioni lineari su una variabile complessa z=x+iy espresse dalla formula z′=(αz+β)/(γz+δ), ove α, β, γ, δ sono numeri interi ed è αδ−βγ=1; si tratta perciò di particolari affinità [...] ciascuna di esse associa a ogni punto del piano complesso un nuovo punto che si dice equivalente al primo fig.) il punto equivalente P′. Se ora si considera la regione R del semipiano y>0 esterna alla circonferenza x2+y2=1 e compresa tra le rette ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE ANALITICA – FUNZIONE MODULARE – PIANO COMPLESSO – GRUPPO MODULARE – NUMERI INTERI
Mostra altri risultati Nascondi altri risultati su modulari, sostituzioni (4)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] che fornisce la soluzione deve essere rettilinea nel semipiano superiore e in quello inferiore, e dunque l corpo e θ è l'angolo indicato in fig. 2. La resistenza complessiva al moto di un corpo avente il profilo descritto dal grafico di una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] Cauchy osservava che nel passare dalla retta reale al piano complesso una funzione di una variabile reale si trasforma in una di Schwarz-Christoffel, le quali trasformano il semipiano superiore in poligoni; tali trasformazioni furono scoperte, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] di s, mostrando come essa si possa estendere a tutto il piano complesso ℂ, che è meromorfa in ℂ con un solo polo in s=1, semplice e di residuo 1, e che non ha zeri nel semipiano Re(s)>1. Riemann enunciò inoltre sei importanti congetture su ζ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] delle matrici Klein studiò come queste matrici agiscano geometricamente sul piano complesso spostando globalmente la regione fondamentale e con essa pavimentano il semipiano superiore. Le regioni fondamentali dei sottogruppi sono costituite da più ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

ipotesi di Riemann

Enciclopedia della Scienza e della Tecnica (2008)

ipotesi di Riemann Matteo Longo Congettura sulla distribuzione degli zeri nella funzione zeta di Riemann. La funzione zeta di Riemann ζ(s) è la serie L di Dirichlet associata al carattere di Dirichlet [...] 1. Come tutte le serie L di Dirichlet, anche la funzione zeta di Riemann converge assolutamente nel semipiano {s∈ℂ tali che R(s)>1} formato dai numeri complessi s con parte reale ✄(s) maggiore di 1, converge (non necessariamente assolutamente) nel ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: CHARLES JEAN DE LA VALLÉE-POUSSIN – DISTRIBUZIONE DEI NUMERI PRIMI – FONDAMENTI DELLA MATEMATICA – FUNZIONE ZETA DI RIEMANN – CONGETTURA DI RIEMANN
Mostra altri risultati Nascondi altri risultati su ipotesi di Riemann (1)
Mostra Tutti

forme modulari

Enciclopedia della Scienza e della Tecnica (2008)

forme modulari Massimo Bertolini Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] peso intero (pari) k≥2 rispetto a Γ è una funzione f:ℋ→ℂ a valori nel campo complesso ℂ, dove ℋ è il semipiano superiore dei numeri complessi aventi parte immaginaria positiva, soddisfacente le condizioni seguenti: (a) f è olomorfa su ℋ (cioè ammette ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: FUNZIONE ZETA DI RIEMANN – ULTIMO TEOREMA DI FERMAT – EQUAZIONE FUNZIONALE – SEMIPIANO SUPERIORE – PRODOTTO DI MATRICI
Mostra altri risultati Nascondi altri risultati su forme modulari (1)
Mostra Tutti

modulare

Dizionario delle Scienze Fisiche (1996)

modulare modulare [agg. Der. di modulo] [LSF] Relativo a un modulo o, più spesso, basato su un modulo e quindi, per es. negli impianti, costituito dall'opportuna disposizione di unità che o sono identiche [...] la sostituzione lineare z'=(az+b)/(cz+d) su una variabile complessa z, dove a,b,c,d sono numeri interi ed è .) il punto equivalente P'. Se ora si considera la regione R del semipiano y>0 esterna alla circonferenza x2+y2=1 e compresa tra le rette ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali